Open In App
Related Articles

Count of elements that can be deleted without disturbing the mean of the initial array

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array arr[] of N integers, the task is to find the count of elements from the array such that after removing them individually (only a single element can be deleted) from the array will not disturb the initial mean of the array.
Examples: 
 

Input: arr[] = {1, 2, 3, 4, 5} 
Output:
3 is the only element removing which 
will not affect the mean of the array. 
i.e. (1 + 2 + 4 + 5) / 4 = 12 / 4 = 3 
which is the mean of the original array.
Input: arr[] = {5, 4, 3, 6} 
Output:
 

 

Approach: 
 

  • Find the initial mean and the sum of the array elements and store them in the variables mean and sum respectively.
  • Now, initialise count = 0 and for every element arr[i] if (sum – arr[i]) / (N – 1) = mean then increment the count.
  • Print the count in the end.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the elements
// which do not change the mean on removal
int countElements(int arr[], int n)
{
 
    // To store the sum of the array elements
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
 
    // To store the initial mean
    float mean = (float)sum / n;
 
    // to store the count of required elements
    int cnt = 0;
    // Iterate over the array
    for (int i = 0; i < n; i++) {
 
        // Finding the new mean
        float newMean = (float)(sum - arr[i]) / (n - 1);
 
        // If the new mean equals to the initial mean
        if (newMean == mean)
            cnt++;
    }
 
    return cnt;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << countElements(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to find the elements
// which do not change the mean on removal
static int countElements(int arr[], int n)
{
 
    // To store the sum of the array elements
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
 
    // To store the initial mean
    float mean = (float)sum / n;
 
    // to store the count of required elements
    int cnt = 0;
     
    // Iterate over the array
    for (int i = 0; i < n; i++)
    {
 
        // Finding the new mean
        float newMean = (float)(sum - arr[i]) /
                                      (n - 1);
 
        // If the new mean equals to
        // the initial mean
        if (newMean == mean)
            cnt++;
    }
    return cnt;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = arr.length;
    System.out.println(countElements(arr, n));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
 
# Function to find the elements
# which do not change the mean on removal
def countElements(arr, n):
 
    # To store the Sum of the array elements
    Sum = 0
    for i in range(n):
        Sum += arr[i]
 
    # To store the initial mean
    mean = Sum / n
 
    # to store the count of required elements
    cnt = 0
     
    # Iterate over the array
    for i in range(n):
         
        # Finding the new mean
        newMean = (Sum - arr[i]) / (n - 1)
 
        # If the new mean equals to
        # the initial mean
        if (newMean == mean):
            cnt += 1
 
    return cnt
 
# Driver code
arr = [1, 2, 3, 4, 5]
n = len(arr)
 
print(countElements(arr, n))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
class GFG
{
 
// Function to find the elements
// which do not change the mean on removal
static int countElements(int []arr, int n)
{
 
    // To store the sum of the array elements
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
 
    // To store the initial mean
    float mean = (float)sum / n;
 
    // to store the count of required elements
    int cnt = 0;
     
    // Iterate over the array
    for (int i = 0; i < n; i++)
    {
 
        // Finding the new mean
        float newMean = (float)(sum - arr[i]) /
                                      (n - 1);
 
        // If the new mean equals to
        // the initial mean
        if (newMean == mean)
            cnt++;
    }
    return cnt;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 1, 2, 3, 4, 5 };
    int n = arr.Length;
    Console.WriteLine(countElements(arr, n));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find the elements
// which do not change the mean on removal
function countElements(arr, n)
{
 
    // To store the sum of the array elements
    let sum = 0;
    for (let i = 0; i < n; i++)
        sum += arr[i];
 
    // To store the initial mean
    let mean = sum / n;
 
    // to store the count of required elements
    let cnt = 0;
    // Iterate over the array
    for (let i = 0; i < n; i++) {
 
        // Finding the new mean
        let newMean = (sum - arr[i]) / (n - 1);
 
        // If the new mean equals to the initial mean
        if (newMean == mean)
            cnt++;
    }
 
    return cnt;
}
 
// Driver code
    let arr = [ 1, 2, 3, 4, 5 ];
    let n = arr.length;
 
    document.write(countElements(arr, n));
 
</script>


Output: 

1

 

Time Complexity: O(N)

Auxiliary Space: O(1)
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 04 Jun, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials