Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Count of elements on the left which are divisible by current element | Set 2

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array A[] of N integers, the task is to generate an array B[] such that B[i] contains the count of indices j in A[] such that j < i and A[j] % A[i] = 0
Examples: 
 

Input: arr[] = {3, 5, 1} 
Output: 0 0 2 
Explanation: 
3 and 5 do not divide any element on 
their left but 1 divides 3 and 5.
Input: arr[] = {8, 1, 28, 4, 2, 6, 7} 
Output: 0 1 0 2 3 0 1 
 

 

Naive Approach: This approach is already discussed here. But the complexity of this approach is O(N2).
Efficient Approach: 
 

  • We can say that if number A divides a number B then A is a factor of B. So, we need to find the number of previous elements whose factor is the current element. 
     
  • We will maintain a count array that contains the count of the factor of each element. 
     
  • Now, Iterate over the array, and for each element 
    1. Make the answer of the current element equal to count [ arr[i] ] and 
       
    2. Increment the frequency of each factor of arr[i] in the count array. 
       

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to print the
// elements of the array
void printArr(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}
 
// Function to increment the count
// for each factor of given val
void IncrementFactors(int count[],
                      int val)
{
 
    for (int i = 1; i * i <= val; i++) {
        if (val % i == 0) {
            if (i == val / i) {
                count[i]++;
            }
            else {
                count[i]++;
                count[val / i]++;
            }
        }
    }
}
 
// Function to generate and print
// the required array
void generateArr(int A[], int n)
{
    int B[n];
 
    // Find max element of array
    int maxi = *max_element(A, A + n);
 
    // Create count array of maxi size
    int count[maxi + 1] = { 0 };
 
    // For every element of the array
    for (int i = 0; i < n; i++) {
 
        // Count[ A[i] ] denotes how many
        // previous elements are there whose
        // factor is the current element.
        B[i] = count[A[i]];
 
        // Increment in count array for
        // factors of A[i]
        IncrementFactors(count, A[i]);
    }
 
    // Print the generated array
    printArr(B, n);
}
 
// Driver code
int main()
{
    int arr[] = { 8, 1, 28, 4, 2, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    generateArr(arr, n);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
 
// Utility function to print the
// elements of the array
static void printArr(int arr[], int n)
{
    for(int i = 0; i < n; i++)
       System.out.print(arr[i] + " ");
}
 
// Function to increment the count
// for each factor of given val
static void IncrementFactors(int count[],
                             int val)
{
    for(int i = 1; i * i <= val; i++)
    {
       if (val % i == 0)
       {
           if (i == val / i)
           {
               count[i]++;
           }
           else
           {
               count[i]++;
               count[val / i]++;
           }
       }
    }
}
 
// Function to generate and print
// the required array
static void generateArr(int A[], int n)
{
    int []B = new int[n];
 
    // Find max element of array
    int maxi = Arrays.stream(A).max().getAsInt();
 
    // Create count array of maxi size
    int count[] = new int[maxi + 1];
 
    // For every element of the array
    for(int i = 0; i < n; i++)
    {
        
       // Count[ A[i] ] denotes how many
       // previous elements are there whose
       // factor is the current element.
       B[i] = count[A[i]];
        
       // Increment in count array for
       // factors of A[i]
       IncrementFactors(count, A[i]);
    }
 
    // Print the generated array
    printArr(B, n);
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 8, 1, 28, 4, 2, 6, 7 };
    int n = arr.length;
 
    generateArr(arr, n);
}
}
 
// This code is contributed by Amit Katiyar

Python3




# Python3 implementation of the approach
 
# Utility function to print
# elements of the array
def printArr(arr, n):
     
    for i in range(n):
        print(arr[i], end = " ")
 
# Function to increment the count
# for each factor of given val
def IncrementFactors(count, val):
 
    i = 1
    while(i * i <= val):
        if (val % i == 0):
            if (i == val // i):
                count[i] += 1
             
            else:
                count[i] += 1
                count[val // i] += 1
                 
        i += 1
 
# Function to generate and print
# the required array
def generateArr(A, n):
     
    B = [0] * n
 
    # Find max element of arr
    maxi = max(A)
 
    # Create count array of maxi size
    count = [0] * (maxi + 1)
 
    # For every element of the array
    for i in range(n):
 
        # Count[ A[i] ] denotes how many
        # previous elements are there whose
        # factor is the current element.
        B[i] = count[A[i]]
 
        # Increment in count array for
        # factors of A[i]
        IncrementFactors(count, A[i])
     
    # Print the generated array
    printArr(B, n)
 
# Driver code
arr = [ 8, 1, 28, 4, 2, 6, 7 ]
n = len(arr)
 
generateArr(arr, n)
 
# This code is contributed by code_hunt

C#




// C# implementation of the approach
using System;
using System.Linq;
 
class GFG{
 
// Utility function to print the
// elements of the array
static void printArr(int []arr, int n)
{
    for(int i = 0; i < n; i++)
       Console.Write(arr[i] + " ");
}
 
// Function to increment the count
// for each factor of given val
static void IncrementFactors(int []count,
                             int val)
{
    for(int i = 1; i * i <= val; i++)
    {
       if (val % i == 0)
       {
           if (i == val / i)
           {
               count[i]++;
           }
           else
           {
               count[i]++;
               count[val / i]++;
           }
       }
    }
}
 
// Function to generate and print
// the required array
static void generateArr(int []A, int n)
{
    int []B = new int[n];
 
    // Find max element of array
    int maxi = A.Max();
 
    // Create count array of maxi size
    int []count = new int[maxi + 1];
 
    // For every element of the array
    for(int i = 0; i < n; i++)
    {
        
       // Count[ A[i] ] denotes how many
       // previous elements are there whose
       // factor is the current element.
       B[i] = count[A[i]];
        
       // Increment in count array for
       // factors of A[i]
       IncrementFactors(count, A[i]);
    }
 
    // Print the generated array
    printArr(B, n);
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 8, 1, 28, 4, 2, 6, 7 };
    int n = arr.Length;
 
    generateArr(arr, n);
}
}
 
// This code is contributed by Amit Katiyar

Javascript




<script>
// Javascript implementation of the approach
 
// Utility function to print the
// elements of the array
function printArr(arr, n)
{
    for (let i = 0; i < n; i++)
        document.write(arr[i] + " ");
}
 
// Function to increment the count
// for each factor of given val
function IncrementFactors(count, val)
{
 
    for (let i = 1; i * i <= val; i++) {
        if (val % i == 0) {
            if (i == parseInt(val / i)) {
                count[i]++;
            }
            else {
                count[i]++;
                count[parseInt(val / i)]++;
            }
        }
    }
}
 
// Function to generate and print
// the required array
function generateArr(A, n)
{
    let B = new Array(n);
 
    // Find max element of array
    let maxi = Math.max(...A);
 
    // Create count array of maxi size
    let count = new Array(maxi + 1).fill(0);
 
    // For every element of the array
    for (let i = 0; i < n; i++) {
 
        // Count[ A[i] ] denotes how many
        // previous elements are there whose
        // factor is the current element.
        B[i] = count[A[i]];
 
        // Increment in count array for
        // factors of A[i]
        IncrementFactors(count, A[i]);
    }
 
    // Print the generated array
    printArr(B, n);
}
 
// Driver code
    let arr = [ 8, 1, 28, 4, 2, 6, 7 ];
    let n = arr.length;
 
    generateArr(arr, n);
 
</script>

Output: 

0 1 0 2 3 0 1

 

Time Complexity: O(N * sqrt(MaxElement))

Auxiliary Space: O(N), since there is an extra array involved thus it takes O(N) extra space , where N is the length of the array
 


My Personal Notes arrow_drop_up
Last Updated : 03 Aug, 2022
Like Article
Save Article
Similar Reads
Related Tutorials