Count of each lowercase character after performing described operations for each prefix of length 1 to N
Given a string S containing N lowercase English alphabets and a dictionary Dict that maps all lowercase English alphabets from ‘a’ to ‘z’ to either 1 or -1. For a string of length K, the following operation can be applied:
- Find the maximum character from index 1 to K, and find the dictionary mapping of the respective maximum character.
- If dictionary mapping is 1, increment all characters from 1 to K, i.e. ‘a’ becomes ‘b’, ‘b’ becomes ‘c’, . . . , ‘z’ becomes ‘a’.
- If dictionary mapping is -1, decrement all characters from 1 to K. i.e. ‘a’ becomes ‘z’, ‘b’ becomes ‘a’, . . . , ‘z’ becomes ‘y’
Perform the described operation for each prefix of the string of length 1 to N.
The task is to determine the count of each lowercase English alphabet after performing the described operation for each prefix of the string of length 1 to N.
Examples:
Input: S=”ab”, Dict[] = [1,-1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1, 1,-1, 1, 1, 1, 1,-1,-1,-1,1,1,-1,1-1]
Output: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Explanation:
For Prefix of length 1: Max character = ‘a’, Mapping = 1. So, increment prefix string. S=”bb”.
For Prefix of length 2: Max character = ‘b’, Mapping = -1. So, decrement prefix string. S = “aa”.Input: S=”abcb”, Dict[] = [1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1,-1,-1,-1,1,1,-1,1-1]
Output: 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Explanation:
For Prefix of length 1: Max character = ‘a’, Mapping = 1. So, increment prefix string. S=”bbcb”.
For Prefix of length 2: Max character = ‘b’, Mapping = -1. So, decrement prefix string. S = “aacb”.
For Prefix of length 3: Max character = ‘c’, Mapping = 1. So, increment prefix string. S=”bbdb”.
For Prefix of length 4: Max character = ‘d’, Mapping = 1. So, increment prefix string. S = “ccec”.
Approach: The solution is based on greedy approach. Follow the below steps to solve this problem:
- Run a loop from i = 0 to i < N and in that loop run another loop from j = i to j >= 0 (to traverse the prefix).
- Now find the maximum element in that prefix and the number that it has been mapped to in Dict, say mp.
- Then apply the increment or decrement operation according to the number mp.
- Now, create a vector ans, to store the frequency of each element.
- Traverse the whole string and fill vector ans.
- Print the elements of vector ans.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the frequency of // all character after performing N operations void processString(string& S, vector< int >& Dict) { int N = S.length(); char mx; // Vector to store the frequency // of all characters vector< int > ans(26, 0); for ( int i = 0; i < N; i++) { mx = 96; for ( int j = 0; j <= i; j++) { mx = max(mx, S[j]); } for ( int j = 0; j <= i; j++) { // If S[j] is 'a' and // Dict[S[j]] is -1 then // make S[j] equals to 'z' if (S[j] + Dict[mx - 'a' ] < 97) { S[j] = S[j] + Dict[mx - 'a' ] + 26; } // If S[j] is 'z' and // Dict[S[j]] is 1 // then make S[j] equals to 'a' else if (S[j] + Dict[mx - 'a' ] > 122) { S[j] = S[j] + Dict[mx - 'a' ] - 26; } else { S[j] += Dict[mx - 'a' ]; } } } for ( int i = 0; i < N; i++) { ans[S[i] - 'a' ]++; } for ( auto x : ans) { cout << x << ' ' ; } } // Driver code int main() { string S = "ab" ; vector< int > Dict = { 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1 - 1 }; processString(S, Dict); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to find the frequency of // all character after performing N operations static void processString( char [] S, int [] Dict) { int N = S.length; char mx; // Vector to store the frequency // of all characters int [] ans = new int [ 26 ]; for ( int i = 0 ; i < N; i++) { mx = 96 ; for ( int j = 0 ; j <= i; j++) { mx = ( char ) Math.max(mx, S[j]); } for ( int j = 0 ; j <= i; j++) { // If S[j] is 'a' and // Dict[S[j]] is -1 then // make S[j] equals to 'z' if (S[j] + Dict[mx - 'a' ] < 97 ) { S[j] = ( char ) (S[j] + Dict[mx - 'a' ] + 26 ); } // If S[j] is 'z' and // Dict[S[j]] is 1 // then make S[j] equals to 'a' else if (S[j] + Dict[mx - 'a' ] > 122 ) { S[j] = ( char ) (S[j] + Dict[mx - 'a' ] - 26 ); } else { S[j] += Dict[mx - 'a' ]; } } } for ( int i = 0 ; i < N; i++) { ans[S[i] - 'a' ]++; } for ( int x : ans) { System.out.print(x + " " ); } } // Driver code public static void main(String[] args) { char []S = "ab" .toCharArray(); int [] Dict = { 1 , - 1 , 1 , 1 , 1 , - 1 , 1 , 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , 1 , 1 , 1 , - 1 , - 1 , - 1 , 1 , 1 , - 1 , 1 - 1 }; processString(S, Dict); } } // This code is contributed by 29AjayKumar |
Python3
# Python program for the above approach # Function to find the frequency of # all character after performing N operations def processString(S, Dict ): N = len (S); mx = ''; # Vector to store the frequency # of all characters ans = [ 0 for i in range ( 26 )]; for i in range (N): mx = chr ( 96 ); for j in range (i + 1 ): mx = chr ( max ( ord (mx), ord (S[j]))); for j in range (i + 1 ): # If S[j] is ord('a') and # Dict[S[j]] is -1 then # make S[j] equals to 'z' if ( ord (S[j]) + Dict [ ord (mx) - ord ( 'a' )] < 97 ): S[j] = ord (S[j] + Dict [ ord (mx) - ord ( 'a' )] + 26 ); # If S[j] is 'z' and # Dict[S[j]] is 1 # then make S[j] equals to ord('a') elif ( ord (S[j]) + Dict [ ord (mx) - ord ( 'a' )] > 122 ): S[j] = ord ( ord (S[j]) + Dict [ ord (mx) - ord ( 'a' )] - 26 ); else : tempc = chr ( ord (S[j]) + Dict [ ord (mx) - ord ( 'a' )]); S = S[ 0 :j] + tempc + S[j:] #S[j] = tempc; for i in range (N): ans[ ord (S[i]) - ord ( 'a' )] + = 1 ; for x in ans: print (x, end = " " ); # Driver code if __name__ = = '__main__' : S = "ab" ; Dict = [ 1 , - 1 , 1 , 1 , 1 , - 1 , 1 , 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , 1 , 1 , 1 , - 1 , - 1 , - 1 , 1 , 1 , - 1 , 1 - 1 ]; processString(S, Dict ); # This code is contributed by 29AjayKumar |
C#
// C# program for the above approach using System; public class GFG { // Function to find the frequency of // all character after performing N operations static void processString( char [] S, int [] Dict) { int N = S.Length; char mx; // List to store the frequency // of all characters int [] ans = new int [26]; for ( int i = 0; i < N; i++) { mx = ( char )96; for ( int j = 0; j <= i; j++) { mx = ( char ) Math.Max(mx, S[j]); } for ( int j = 0; j <= i; j++) { // If S[j] is 'a' and // Dict[S[j]] is -1 then // make S[j] equals to 'z' if (S[j] + Dict[mx - 'a' ] < 97) { S[j] = ( char ) (S[j] + Dict[mx - 'a' ] + 26); } // If S[j] is 'z' and // Dict[S[j]] is 1 // then make S[j] equals to 'a' else if (S[j] + Dict[mx - 'a' ] > 122) { S[j] = ( char ) (S[j] + Dict[mx - 'a' ] - 26); } else { S[j] += ( char )Dict[mx - 'a' ]; } } } for ( int i = 0; i < N; i++) { ans[S[i] - 'a' ]++; } foreach ( int x in ans) { Console.Write(x + " " ); } } // Driver code public static void Main(String[] args) { char []S = "ab" .ToCharArray(); int [] Dict = { 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1 - 1 }; processString(S, Dict); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // javascript program for the above approach let m = { 'a' : 0, 'b' : 1 } // Function to find the frequency of // all character after performing N operations function processString(S, Dict) { let N = S.length; let mx = '' ; // Vector to store the frequency // of all characters let ans = new Array(26).fill(0); for (let i = 0; i < N; i++) { mx = 96; for (let j = 0; j <= i; j++) { mx = Math.max(mx, S[j].charCodeAt(0)); } for (let j = 0; j <= i; j++) { // If S[j] is 'a' and // Dict[S[j]] is -1 then // make S[j] equals to 'z' if (S[j].charCodeAt(0) + Dict[m[mx]] < 97) { S[j] = String.fromCharCode(S[j].charCodeAt(0) + Dict[m[mx]] + 26); } // If S[j] is 'z' and // Dict[S[j]] is 1 // then make S[j] equals to 'a' else if (S[j].charCodeAt(0) + Dict[m[mx]] > 122) { S[j] = String.fromCharCode(S[j].charCodeAt(0) + Dict[m[mx]] - 26); } else { S[j] = String.fromCharCode(S[j].charCodeAt(0) + Dict[m[mx]]); } } } for (let i = 0; i < N; i++) { ans[S[i].charCodeAt(0)]++; } ans.forEach( function (ele){ document.write(ele + " " ); }) } // Driver code let S = [ 'a' , 'b' ]; let Dict = [1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1 - 1]; processString(S, Dict); // The code is contributed by Gautam goel. </script> |
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Time Complexity: O(N2)
Auxiliary Space: O(1)
Please Login to comment...