Given an integer **N**, the task is to find the count of total distinct remainders which can be obtained when **N** is divided by every element from the range **[1, N]**.**Examples:**

Input:N = 5Output:3

5 % 1 = 0

5 % 2 = 1

5 % 3 = 2

5 % 4 = 1

5 % 5 = 0

The distinct remainders are 0, 1 and 2.Input:N = 44Output:22

**Approach:** It can be easily observed that for even values of **N** the number of distinct remainders will be **N / 2** and for odd values of **N** it will be **1 + ⌊N / 2⌋**.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the count of distinct` `// remainders that can be obtained when` `// n is divided by every element` `// from the range [1, n]` `int` `distinctRemainders(` `int` `n)` `{` ` ` `// If n is even` ` ` `if` `(n % 2 == 0)` ` ` `return` `(n / 2);` ` ` `// If n is odd` ` ` `return` `(1 + (n / 2));` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 5;` ` ` `cout << distinctRemainders(n);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the above approach` `class` `GFG` `{` `// Function to return the count of distinct` `// remainders that can be obtained when` `// n is divided by every element` `// from the range [1, n]` `static` `int` `distinctRemainders(` `int` `n)` `{` ` ` `// If n is even` ` ` `if` `(n % ` `2` `== ` `0` `)` ` ` `return` `(n / ` `2` `);` ` ` `// If n is odd` ` ` `return` `(` `1` `+ (n / ` `2` `));` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `n = ` `5` `;` ` ` `System.out.println(distinctRemainders(n));` `}` `}` `// This code is contributed by Mohit Kumar` |

## Python3

`# Python3 implementation of the approach` `# Function to return the count of distinct` `# remainders that can be obtained when` `# n is divided by every element` `# from the range [1, n]` `def` `distinctRemainders(n):` ` ` ` ` `# If n is even` ` ` `if` `n ` `%` `2` `=` `=` `0` `:` ` ` `return` `n` `/` `/` `2` ` ` ` ` `# If n is odd` ` ` `return` `((n` `/` `/` `2` `)` `+` `1` `)` `# Driver code` `if` `__name__` `=` `=` `"__main__"` `:` ` ` `n ` `=` `5` ` ` `print` `(distinctRemainders(n))` |

## C#

`// C# implementation of the above approach` `using` `System;` `class` `GFG` `{` ` ` ` ` `// Function to return the count of distinct` ` ` `// remainders that can be obtained when` ` ` `// n is divided by every element` ` ` `// from the range [1, n]` ` ` `static` `int` `distinctRemainders(` `int` `n)` ` ` `{` ` ` ` ` `// If n is even` ` ` `if` `(n % 2 == 0)` ` ` `return` `(n / 2);` ` ` ` ` `// If n is odd` ` ` `return` `(1 + (n / 2));` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main()` ` ` `{` ` ` `int` `n = 5;` ` ` `Console.WriteLine(distinctRemainders(n));` ` ` `}` `}` `// This code is contributed by AnkitRai01` |

## Javascript

`<script>` `// Javascript implementation of the approach` `// Function to return the count of distinct` `// remainders that can be obtained when` `// n is divided by every element` `// from the range [1, n]` `function` `distinctRemainders(n)` `{` ` ` `// If n is even` ` ` `if` `(n % 2 == 0)` ` ` `return` `parseInt(n / 2);` ` ` `// If n is odd` ` ` `return` `(1 + parseInt(n / 2));` `}` `// Driver code` ` ` `let n = 5;` ` ` `document.write(distinctRemainders(n));` `</script>` |

**Output:**

3

**Time Complexity:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**