Count of distinct pair sum in given Array
Given an array arr[] of size N, the task is to find the total number of unique pair sums possible from the array elements.
Examples:
Input: arr[] = {6, 1, 4, 3}
Output: 5
Explanation: All pair possible are {6, 1}, {6, 4}, {6, 3}, {1, 4}, {1, 3}, {4, 3}. S
ums of these pairs are 7, 10, 9, 5, 4, 7. So unique sums 7, 10, 9, 5, 4. So answer is 5.Input: arr[] = {8, 7, 6, 5, 4, 3, 2, 1}
Output: 13
Approach: This problem can be efficiently solved by using unordered_set.
Calculate all possible sum of pairs and store them in an unordered set. This is done to store the store elements in an average time of O(1) with no value repeating.
Algorithm:
- Use nested loops to get all possible sums of elements of the array.
- Store all the possible sums into an unordered_set.
- Total possible unique sums would be equal to the size of unordered_set. So return the size of the unordered set.
Below is the implementation of the above approach:
C++
// C++ program to count the pairs with unique sums #include <bits/stdc++.h> using namespace std; // Function to return the // total count of required pairs int count( int arr[], int n) { unordered_set< int > s; // Add all possible sums into the set for ( int i = 0; i < n - 1; i++) { for ( int j = i + 1; j < n; j++) { s.insert(arr[i] + arr[j]); } } // Return the size of set return s.size(); } // Driver code int main() { int arr[] = { 6, 1, 4, 3 }; int N = sizeof (arr) / sizeof (arr[0]); // Function call cout << count(arr, N); return 0; } |
Java
// Java program to find Count the pairs // with unique sums import java.util.*; class GFG { // Function to return the // total count of required pairs static int count( int arr[], int n) { Set<Integer> s = new HashSet<Integer>(); // Add all possible sums into the set for ( int i = 0 ; i < n - 1 ; i++) { for ( int j = i + 1 ; j < n; j++) { s.add(arr[i] + arr[j]); } } // Return the size of set return s.size(); } // Driver code public static void main(String args[]) { int arr[] = { 6 , 1 , 4 , 3 }; int N = arr.length; // Function call System.out.println(count(arr, N)); } } |
Python3
# Python program to find Count the pairs # with unique sums # Function to return the # total count of required pairs def count(arr, n): s = set () # Add all possible sums into the set for i in range (n - 1 ): for j in range (i + 1 , n): s.add(arr[i] + arr[j]) # Return the size of set return int ( len (s)) # Driver code if __name__ = = '__main__' : arr = [ 6 , 1 , 4 , 3 ] N = len (arr) # Function call print (count(arr, N)) |
C#
// C# program to count the pairs with unique sums using System; using System.Collections.Generic; public class GFG { // Function to return the // total count of required pairs static int count( int []arr, int n) { HashSet< int > s = new HashSet< int >(); // Add all possible sums into the set for ( int i = 0; i < n - 1; i++) { for ( int j = i + 1; j < n; j++) { s.Add(arr[i] + arr[j]); } } // Return the size of set return s.Count; } // Driver code static public void Main() { int []arr = { 6, 1, 4, 3 }; int N = arr.Length; // Function call Console.WriteLine(count(arr, N)); } } // This code is contributed by Rohit Pradhan |
Javascript
<script> // JavaScript program to find Count the pairs // with unique sums // Function to return the // total count of required pairs function count(arr, n) { let s = new Set(); // Add all possible sums into the set for (let i = 0; i < n - 1; i++) { for (let j = i + 1; j < n; j++) { s.add(arr[i] + arr[j]); } } // Return the size of set return s.size; } // Driver code let arr = [6, 1, 4, 3]; let N = arr.length; // Function call document.write(count(arr, N)); </script> |
Output
5
Time complexity: O(N2)
Auxiliary Space: O(N)
Please Login to comment...