# Count of distinct graphs that can be formed with N vertices

Given an integer **N** which is the number of vertices. The task is to find the number of distinct graphs that can be formed. Since the answer can be very large, print the **answer % 1000000007**.**Examples:**

Input:N = 3Output:8Input:N = 4Output:64

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Approach:**

- The maximum number of edges a graph with
**N**vertices can contain is**X = N * (N – 1) / 2.** - The total number of graphs containing
**0**edge and**N**vertices will be^{X}C_{0} - The total number of graphs containing
**1**edge and**N**vertices will be^{X}C_{1} - And so on from a number of edges 1 to
**X**with**N**vertices - Hence, the total number of graphs that can be formed with n vertices will be:
^{X}C_{0}+^{X}C_{1}+^{X}C_{2}+ … +^{X}C_{X}= 2^{X}.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `const` `int` `MOD = 1e9 + 7;` `// Function to return (x^y) % MOD` `// in O(log(y))` `long` `long` `power(` `long` `long` `x,` ` ` `long` `long` `y,` ` ` `const` `int` `& MOD)` `{` ` ` `long` `long` `res = 1;` ` ` `while` `(y > 0) {` ` ` `if` `(y & 1)` ` ` `res = (res * x) % MOD;` ` ` `x = (x * x) % MOD;` ` ` `y /= 2;` ` ` `}` ` ` `return` `res;` `}` `// Function to return the count of distinct` `// graphs possible with n vertices` `long` `long` `countGraphs(` `int` `n)` `{` ` ` `// Maximum number of edges for a` ` ` `// graph with n vertices` ` ` `long` `long` `x = n * (n - 1) / 2;` ` ` `// Function to calculate` ` ` `// (2^x) % mod` ` ` `return` `power(2, x, MOD);` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 5;` ` ` `cout << countGraphs(n);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `class` `GFG` `{` ` ` `static` `final` `int` `MOD = (` `int` `)1e9 + ` `7` `;` ` ` ` ` `// Function to return (x^y) % MOD` ` ` `// in O(log(y))` ` ` `static` `long` `power(` `long` `x,` ` ` `long` `y)` ` ` `{` ` ` `long` `res = ` `1` `;` ` ` `while` `(y > ` `0` `)` ` ` `{` ` ` `if` `((y & ` `1` `) != ` `0` `)` ` ` `res = (res * x) % MOD;` ` ` `x = (x * x) % MOD;` ` ` `y /= ` `2` `;` ` ` `}` ` ` `return` `res;` ` ` `}` ` ` ` ` `// Function to return the count of distinct` ` ` `// graphs possible with n vertices` ` ` `static` `long` `countGraphs(` `int` `n)` ` ` `{` ` ` ` ` `// Maximum number of edges for a` ` ` `// graph with n vertices` ` ` `long` `x = n * (n - ` `1` `) / ` `2` `;` ` ` ` ` `// Function to calculate` ` ` `// (2^x) % mod` ` ` `return` `power(` `2` `, x);` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `main (String[] args)` ` ` `{` ` ` `int` `n = ` `5` `;` ` ` ` ` `System.out.println(countGraphs(n));` ` ` `}` `}` `// This code is contributed by AnkitRai01` |

## Python

`MOD ` `=` `int` `(` `1e9` `+` `7` `)` `# Function to return the count of distinct` `# graphs possible with n vertices` `def` `countGraphs(n):` ` ` `# Maximum number of edges for a` ` ` `# graph with n vertices` ` ` `x ` `=` `(n ` `*` `( n ` `-` `1` `)) ` `/` `/` `2` ` ` ` ` `# Return 2 ^ x` ` ` `return` `(` `pow` `(` `2` `, x, MOD))` `# Driver code` `n ` `=` `5` `print` `(countGraphs(n))` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG` `{` ` ` `static` `int` `MOD = (` `int` `)1e9 + 7;` ` ` ` ` `// Function to return (x^y) % MOD` ` ` `// in O(log(y))` ` ` `static` `long` `power(` `long` `x, ` `long` `y)` ` ` `{` ` ` `long` `res = 1;` ` ` `while` `(y > 0)` ` ` `{` ` ` `if` `((y & 1) != 0)` ` ` `res = (res * x) % MOD;` ` ` `x = (x * x) % MOD;` ` ` `y /= 2;` ` ` `}` ` ` `return` `res;` ` ` `}` ` ` ` ` `// Function to return the count of distinct` ` ` `// graphs possible with n vertices` ` ` `static` `long` `countGraphs(` `int` `n)` ` ` `{` ` ` ` ` `// Maximum number of edges for a` ` ` `// graph with n vertices` ` ` `long` `x = n * (n - 1) / 2;` ` ` ` ` `// Function to calculate` ` ` `// (2^x) % mod` ` ` `return` `power(2, x);` ` ` `}` ` ` ` ` `// Driver code` ` ` `static` `public` `void` `Main ()` ` ` `{` ` ` `int` `n = 5;` ` ` ` ` `Console.Write(countGraphs(n));` ` ` `}` `}` `// This code is contributed by ajit.` |

## Javascript

`<script>` `// Javascript implementation of the approach` `const MOD = 1000000000 + 7;` `// Function to return (x^y) % MOD` `// in O(log(y))` `function` `power(x, y, MOD)` `{` ` ` `let res = 1;` ` ` `while` `(y > 0) {` ` ` `if` `(y & 1)` ` ` `res = (res * x) % MOD;` ` ` `x = (x * x) % MOD;` ` ` `y = parseInt(y / 2);` ` ` `}` ` ` `return` `res;` `}` `// Function to return the count of distinct` `// graphs possible with n vertices` `function` `countGraphs(n)` `{` ` ` `// Maximum number of edges for a` ` ` `// graph with n vertices` ` ` `let x = parseInt(n * (n - 1) / 2);` ` ` `// Function to calculate` ` ` `// (2^x) % mod` ` ` `return` `power(2, x, MOD);` `}` `// Driver code` ` ` `let n = 5;` ` ` `document.write(countGraphs(n));` `</script>` |

**Output:**

1024