Related Articles

# Count of distinct graphs that can be formed with N vertices

• Difficulty Level : Basic
• Last Updated : 03 May, 2021

Given an integer N which is the number of vertices. The task is to find the number of distinct graphs that can be formed. Since the answer can be very large, print the answer % 1000000007.
Examples:

Input: N = 3
Output: 8
Input: N = 4
Output: 64

Approach:

• The maximum number of edges a graph with N vertices can contain is X = N * (N – 1) / 2.
• The total number of graphs containing 0 edge and N vertices will be XC0
• The total number of graphs containing 1 edge and N vertices will be XC1
• And so on from a number of edges 1 to X with N vertices
• Hence, the total number of graphs that can be formed with n vertices will be:
XC0 + XC1 + XC2 + … + XCX = 2X.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `const` `int` `MOD = 1e9 + 7;` `// Function to return (x^y) % MOD``// in O(log(y))``long` `long` `power(``long` `long` `x,``                ``long` `long` `y,``                ``const` `int``& MOD)``{``    ``long` `long` `res = 1;``    ``while` `(y > 0) {``        ``if` `(y & 1)``            ``res = (res * x) % MOD;``        ``x = (x * x) % MOD;``        ``y /= 2;``    ``}``    ``return` `res;``}` `// Function to return the count of distinct``// graphs possible with n vertices``long` `long` `countGraphs(``int` `n)``{` `    ``// Maximum number of edges for a``    ``// graph with n vertices``    ``long` `long` `x = n * (n - 1) / 2;` `    ``// Function to calculate``    ``// (2^x) % mod``    ``return` `power(2, x, MOD);``}` `// Driver code``int` `main()``{``    ``int` `n = 5;` `    ``cout << countGraphs(n);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG``{``    ``static` `final` `int` `MOD = (``int``)1e9 + ``7``;``    ` `    ``// Function to return (x^y) % MOD``    ``// in O(log(y))``    ``static` `long` `power(``long` `x,``                      ``long` `y)``    ``{``        ``long` `res = ``1``;``        ``while` `(y > ``0``)``        ``{``            ``if` `((y & ``1``) != ``0``)``                ``res = (res * x) % MOD;``            ``x = (x * x) % MOD;``            ``y /= ``2``;``        ``}``        ``return` `res;``    ``}``    ` `    ``// Function to return the count of distinct``    ``// graphs possible with n vertices``    ``static` `long` `countGraphs(``int` `n)``    ``{``    ` `        ``// Maximum number of edges for a``        ``// graph with n vertices``        ``long` `x = n * (n - ``1``) / ``2``;``    ` `        ``// Function to calculate``        ``// (2^x) % mod``        ``return` `power(``2``, x);``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `n = ``5``;``    ` `        ``System.out.println(countGraphs(n));``    ``}``}` `// This code is contributed by AnkitRai01`

## Python

 `MOD ``=` `int``(``1e9` `+` `7``)` `# Function to return the count of distinct``# graphs possible with n vertices``def` `countGraphs(n):` `    ``# Maximum number of edges for a``    ``# graph with n vertices``    ``x ``=` `(n ``*``( n ``-` `1` `)) ``/``/``2``    ` `    ``# Return 2 ^ x``    ``return` `(``pow``(``2``, x, MOD))` `# Driver code``n ``=` `5``print``(countGraphs(n))`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ``static` `int` `MOD = (``int``)1e9 + 7;``    ` `    ``// Function to return (x^y) % MOD``    ``// in O(log(y))``    ``static` `long` `power(``long` `x, ``long` `y)``    ``{``        ``long` `res = 1;``        ``while` `(y > 0)``        ``{``            ``if` `((y & 1) != 0)``                ``res = (res * x) % MOD;``            ``x = (x * x) % MOD;``            ``y /= 2;``        ``}``        ``return` `res;``    ``}``    ` `    ``// Function to return the count of distinct``    ``// graphs possible with n vertices``    ``static` `long` `countGraphs(``int` `n)``    ``{``    ` `        ``// Maximum number of edges for a``        ``// graph with n vertices``        ``long` `x = n * (n - 1) / 2;``    ` `        ``// Function to calculate``        ``// (2^x) % mod``        ``return` `power(2, x);``    ``}``    ` `    ``// Driver code``    ``static` `public` `void` `Main ()``    ``{``        ``int` `n = 5;``    ` `        ``Console.Write(countGraphs(n));``    ``}``}` `// This code is contributed by ajit.`

## Javascript

 ``
Output:
`1024`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up