Count of cells in a matrix whose adjacent cells’s sum is prime Number

Given a M x N matrix mat[][], the task is to count the number of cells which have the sum of its adjacent cells equal to a prime number. For a cell x[i][j], only x[i+1][j], x[i-1][j], x[i][j+1] and x[i][j-1] are the adjacent cells.
Examples: 

Input : mat[][] = {{1, 3}, {2, 5}} 
Output :
Explanation: Only the cells mat[0][0] and mat[1][1] satisfying the condition. 
i.e for mat[0][0]:(3+2) = 5, for mat[1][1]: (3+2) = 5
Input : mat[][] = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} 
Output :
Explanation: Cells mat[0][0], mat[0][2], mat[0][3], mat[1][3], mat[2][2] and mat[2][3] are satisfying the condition. 
 

Prerequisites: Sieve of Eratosthenes 
Approach:  

Below is the implementation of the above approach.
 

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find the cells whose
// adjacent cells's sum is prime Number
#include <bits/stdc++.h>
using namespace std;
#define MAX 100005
 
bool prime[MAX];
 
void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..MAX-1]"
    // and initialize all entries it as true.
    // A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    memset(prime, true, sizeof(prime));
 
    prime[0] = prime[1] = false;
 
    for (int p = 2; p * p < MAX; p++) {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
            // Update all multiples of p
            // greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to count the cells having
// adjacent cell's sum
// is equal to prime
int PrimeSumCells(vector<vector<int> >& mat)
{
    int count = 0;
 
    int N = mat.size();
    int M = mat[0].size();
 
    // Traverse for all the cells
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < M; j++) {
 
            int sum = 0;
 
            // i-1, j
            if (i - 1 >= 0)
                sum += mat[i - 1][j];
 
            // i+1, j
            if (i + 1 < N)
                sum += mat[i + 1][j];
 
            // i, j-1
            if (j - 1 >= 0)
                sum += mat[i][j - 1];
 
            // i, j+1
            if (j + 1 < M)
                sum += mat[i][j + 1];
 
            // If the sum is a prime number
            if (prime[sum])
                count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Program
int main()
{
    SieveOfEratosthenes();
 
    vector<vector<int> > mat = { { 1, 2, 3, 4 },
                                 { 5, 6, 7, 8 },
                                 { 9, 10, 11, 12 } };
 
    // Function call
    cout << PrimeSumCells(mat) << endl;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the cells whose
// adjacent cells's sum is prime Number
class GFG{
static final int MAX = 100005;
 
static boolean []prime = new boolean[MAX];
 
static void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..MAX-1]"
    // and initialize all entries it as true.
    // A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    for (int i = 0; i < prime.length; i++)
    prime[i] = true;
 
    prime[0] = prime[1] = false;
 
    for (int p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
            // Update all multiples of p
            // greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to count the cells having
// adjacent cell's sum
// is equal to prime
static int PrimeSumCells(int [][]mat)
{
    int count = 0;
 
    int N = mat.length;
    int M = mat[0].length;
 
    // Traverse for all the cells
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
            int sum = 0;
 
            // i-1, j
            if (i - 1 >= 0)
                sum += mat[i - 1][j];
 
            // i+1, j
            if (i + 1 < N)
                sum += mat[i + 1][j];
 
            // i, j-1
            if (j - 1 >= 0)
                sum += mat[i][j - 1];
 
            // i, j+1
            if (j + 1 < M)
                sum += mat[i][j + 1];
 
            // If the sum is a prime number
            if (prime[sum])
                count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Code
public static void main(String[] args)
{
    SieveOfEratosthenes();
 
    int [][]mat = { { 1, 2, 3, 4 },
                    { 5, 6, 7, 8 },
                    { 9, 10, 11, 12 } };
 
    // Function call
    System.out.print(PrimeSumCells(mat) + "\n");
}
}
 
// This code is contributed by sapnasingh4991
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to
# find the cells whose
# adjacent cells's
# sum is prime Number
MAX = 100005
prime = [True] * MAX
 
def SieveOfEratosthenes():
 
    # Create a boolean array "prime[0..MAX-1]"
    # and initialize all entries it as true.
    # A value in prime[i] will finally
    # be false if i is Not a prime, else true.
    global prime
     
    prime[0] = prime[1] = False
 
    p = 2
    while p * p < MAX:
       
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
           
            # Update all multiples of p
            # greater than or
            # equal to the square of it
            # numbers which are multiple of
            # p and are less than p^2 are
            # already been marked.
            for i in range (p * p, MAX, p):
                prime[i] = False               
        p += 1
       
# Function to count the
# cells having adjacent
# cell's sum is equal to prime
def PrimeSumCells(mat):
 
    count = 0
    N = len(mat)
    M = len(mat[0])
 
    # Traverse for all the cells
    for i in range (N):
        for j in range (M):
 
            sum = 0
 
            # i - 1, j
            if (i - 1 >= 0):
                sum += mat[i - 1][j]
 
            # i + 1, j
            if (i + 1 < N):
                sum += mat[i + 1][j]
 
            # i, j - 1
            if (j - 1 >= 0):
                sum += mat[i][j - 1]
 
            # i, j + 1
            if (j + 1 < M):
                sum += mat[i][j + 1]
 
            # If the sum is a prime number
            if (prime[sum]):
                count += 1
    
    # Return the count
    return count
 
# Driver code
if __name__ =="__main__":
       
    SieveOfEratosthenes()
    mat = [[1, 2, 3, 4],
           [5, 6, 7, 8],
           [9, 10, 11, 12]]
 
    # Function call
    print (PrimeSumCells(mat))
     
# This code is contributed by Chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the cells whose
// adjacent cells's sum is prime Number
using System;
class GFG{
     
static readonly int MAX = 100005;
static bool []prime = new bool[MAX];
 
static void SieveOfEratosthenes()
{
    // Create a bool array "prime[0..MAX-1]"
    // and initialize all entries it as true.
    // A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    for (int i = 0; i < prime.Length; i++)
    prime[i] = true;
 
    prime[0] = prime[1] = false;
 
    for (int p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
            // Update all multiples of p
            // greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to count the cells having
// adjacent cell's sum
// is equal to prime
static int PrimeSumCells(int [,]mat)
{
    int count = 0;
 
    int N = mat.GetLength(0);
    int M = mat.GetLength(1);
 
    // Traverse for all the cells
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
            int sum = 0;
 
            // i-1, j
            if (i - 1 >= 0)
                sum += mat[i - 1, j];
 
            // i+1, j
            if (i + 1 < N)
                sum += mat[i + 1, j];
 
            // i, j-1
            if (j - 1 >= 0)
                sum += mat[i, j - 1];
 
            // i, j+1
            if (j + 1 < M)
                sum += mat[i, j + 1];
 
            // If the sum is a prime number
            if (prime[sum])
                count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
    SieveOfEratosthenes();
 
    int [,]mat = { { 1, 2, 3, 4 },
                   { 5, 6, 7, 8 },
                   { 9, 10, 11, 12 } };
 
    // Function call
    Console.Write(PrimeSumCells(mat) + "\n");
}
}
 
// This code is contributed by sapnasingh4991
chevron_right

Output: 
6



 





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : sapnasingh4991, chitranayal

Article Tags :
Practice Tags :