Open In App

Count of binary strings of length N having equal count of 0’s and 1’s

Improve
Improve
Like Article
Like
Save
Share
Report

Given an integer N, the task is to find the number of binary strings possible of length N having same frequency of 0s and 1s. If such string is possible of length N, print -1
Note: Since the count can be very large, return the answer modulo 109+7.
Examples: 
 

Input: N = 2 
Output:
Explanation: 
All possible binary strings of length 2 are “00”, “01”, “10” and “11”. 
Among them, “10” and “01” have the same frequency of 0s and 1s. 
Hence, the answer is 2.
Input:
Output:
Explanation: 
Strings “0011”, “0101”, “0110”, “1100”, “1010” and “1001” have same frequency of 0s and 1s. 
Hence, the answer is 6. 
 

Naive Approach: 
The simplest approach is to generate all possible permutations of a string of length N having equal number of ‘0’ and ‘1’. For every permutation generated, increase the count. Print the total count of permutations generated. 
Time Complexity: O(N*N!) 
Auxiliary Space: O(N)
Efficient Approach: 
The above approach can be optimized by using concepts of Permutation and Combination. Follow the steps below to solve the problem: 
 

  • Since N positions need to be filled with equal number of 0‘s and 1‘s, select N/2 positions from the N positions in C(N, N/2) % mod( where mod = 109 + 7) ways to fill with only 1’s.
  • Fill the remaining positions in C(N/2, N/2) % mod (i.e 1) way with only 0’s.

Below is the implementation of the above approach:
 

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
#define MOD 1000000007
 
// Function to calculate C(n, r) % MOD
// DP based approach
int nCrModp(int n, int r)
{
    // Corner case
    if (n % 2 == 1) {
        return -1;
    }
 
    // Stores the last row
    // of Pascal's Triangle
    int C[r + 1];
 
    memset(C, 0, sizeof(C));
 
    // Initialize top row
    // of pascal triangle
    C[0] = 1;
 
    // Construct Pascal's Triangle
    // from top to bottom
    for (int i = 1; i <= n; i++) {
 
        // Fill current row with the
        // help of previous row
        for (int j = min(i, r); j > 0;
            j--)
 
            // C(n, j) = C(n-1, j)
            // + C(n-1, j-1)
            C[j] = (C[j] + C[j - 1])
                % MOD;
    }
 
    return C[r];
}
 
// Driver Code
int main()
{
    int N = 6;
    cout << nCrModp(N, N / 2);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
     
final static int MOD = 1000000007;
     
// Function to calculate C(n, r) % MOD
// DP based approach
static int nCrModp(int n, int r)
{
 
    // Corner case
    if (n % 2 == 1)
    {
        return -1;
    }
 
    // Stores the last row
    // of Pascal's Triangle
    int C[] = new int[r + 1];
 
    Arrays.fill(C, 0);
 
    // Initialize top row
    // of pascal triangle
    C[0] = 1;
 
    // Construct Pascal's Triangle
    // from top to bottom
    for(int i = 1; i <= n; i++)
    {
 
        // Fill current row with the
        // help of previous row
        for(int j = Math.min(i, r);
                j > 0; j--)
 
            // C(n, j) = C(n-1, j)
            // + C(n-1, j-1)
            C[j] = (C[j] + C[j - 1]) % MOD;
    }
    return C[r];
}
 
// Driver Code
public static void main(String s[])
{
    int N = 6;
    System.out.println(nCrModp(N, N / 2));
}
}
 
// This code is contributed by rutvik_56


Python3




# Python3 program to implement
# the above approach
MOD = 1000000007
 
# Function to calculate C(n, r) % MOD
# DP based approach
def nCrModp (n, r):
 
    # Corner case
    if (n % 2 == 1):
        return -1
 
    # Stores the last row
    # of Pascal's Triangle
    C = [0] * (r + 1)
 
    # Initialize top row
    # of pascal triangle
    C[0] = 1
 
    # Construct Pascal's Triangle
    # from top to bottom
    for i in range(1, n + 1):
 
        # Fill current row with the
        # help of previous row
        for j in range(min(i, r), 0, -1):
 
            # C(n, j) = C(n-1, j)
            # + C(n-1, j-1)
            C[j] = (C[j] + C[j - 1]) % MOD
 
    return C[r]
 
# Driver Code
N = 6
 
print(nCrModp(N, N // 2))
 
# This code is contributed by himanshu77


C#




// C# program for the above approach
using System;
 
class GFG{
     
static int MOD = 1000000007;
 
// Function to calculate C(n, r) % MOD
// DP based approach
static int nCrModp(int n, int r)
{
     
    // Corner case
    if (n % 2 == 1)
    {
        return -1;
    }
 
    // Stores the last row
    // of Pascal's Triangle
    int[] C = new int[r + 1];
 
    // Initialize top row
    // of pascal triangle
    C[0] = 1;
 
    // Construct Pascal's Triangle
    // from top to bottom
    for(int i = 1; i <= n; i++)
    {
 
        // Fill current row with the
        // help of previous row
        for(int j = Math.Min(i, r);
                j > 0; j--)
 
            // C(n, j) = C(n-1, j)
            // + C(n-1, j-1)
            C[j] = (C[j] + C[j - 1]) % MOD;
    }
    return C[r];
}
 
// Driver code
static void Main()
{
    int N = 6;
    Console.WriteLine(nCrModp(N, N / 2));
}
}
 
// This code is contributed by divyeshrabadiya07


Javascript




<script>
 
// Javascript program for the above approach
 
    var MOD = 1000000007;
 
    // Function to calculate C(n, r) % MOD
    // DP based approach
    function nCrModp(n , r) {
 
        // Corner case
        if (n % 2 == 1) {
            return -1;
        }
 
        // Stores the last row
        // of Pascal's Triangle
        var C = Array(r + 1).fill(0);
 
     
 
        // Initialize top row
        // of pascal triangle
        C[0] = 1;
 
        // Construct Pascal's Triangle
        // from top to bottom
        for (i = 1; i <= n; i++) {
 
            // Fill current row with the
            // help of previous row
            for (j = Math.min(i, r); j > 0; j--)
 
                // C(n, j) = C(n-1, j)
                // + C(n-1, j-1)
                C[j] = (C[j] + C[j - 1]) % MOD;
        }
        return C[r];
    }
 
    // Driver Code
        var N = 6;
        document.write(nCrModp(N, N / 2));
 
// This code contributed by gauravrajput1
 
</script>


Output: 

20

 

Time Complexity: O(N2
Space Complexity: O(N)
 



Last Updated : 05 May, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads