# Count of binary strings of given length consisting of at least one 1

• Difficulty Level : Medium
• Last Updated : 03 Aug, 2021

Given an integer N, the task is to print the number of binary strings of length N which at least one ‘1’.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input:
Output:
Explanation:
“01”, “10” and “11” are the possible strings

Input:
Output:
Explanation:
“001”, “011”, “010”, “100”, “101”, “110” and “111” are the possible strings

Approach:
We can observe that:

Only one string of length N does not contain any 1, the one filled with only 0’s.
Since 2N strings are possible of length N, the required answer is 2N – 1

Follow the steps below to solve the problem:

• Initialize X = 1.
• Compute upto 2N by performing bitwise left shift on X, N-1 times.
• Finally, print X – 1 as the required answer.

Below is the implementation of our approach:

## C++

 `// C++ Program to implement``// the above approach``#include ``using` `namespace` `std;` `// Function to return``// the count of strings``long` `count_strings(``long` `n)``{``    ``int` `x = 1;` `    ``// Calculate pow(2, n)``    ``for` `(``int` `i = 1; i < n; i++) {``        ``x = (1 << x);``    ``}` `    ``// Return pow(2, n) - 1``    ``return` `x - 1;``}` `// Driver Code``int` `main()``{``    ``long` `n = 3;` `    ``cout << count_strings(n);` `    ``return` `0;``}`

## Java

 `// Java program to implement``// the above approach``import` `java.util.*;` `class` `GFG{` `// Function to return``// the count of Strings``static` `long` `count_Strings(``long` `n)``{``    ``int` `x = ``1``;` `    ``// Calculate Math.pow(2, n)``    ``for``(``int` `i = ``1``; i < n; i++)``    ``{``       ``x = (``1` `<< x);``    ``}` `    ``// Return Math.pow(2, n) - 1``    ``return` `x - ``1``;``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``long` `n = ``3``;` `    ``System.out.print(count_Strings(n));``}``}` `// This code is contributed by Amit Katiyar`

## Python3

 `# Python3 program to implement``# the above approach` `# Function to return``# the count of Strings``def` `count_Strings(n):``    ` `    ``x ``=` `1``;` `    ``# Calculate pow(2, n)``    ``for` `i ``in` `range``(``1``, n):``        ``x ``=` `(``1` `<< x);` `    ``# Return pow(2, n) - 1``    ``return` `x ``-` `1``;` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ` `    ``n ``=` `3``;` `    ``print``(count_Strings(n));` `# This code is contributed by Princi Singh`

## C#

 `// C# program to implement``// the above approach``using` `System;` `class` `GFG{` `// Function to return``// the count of Strings``static` `long` `count_Strings(``long` `n)``{``    ``int` `x = 1;` `    ``// Calculate Math.Pow(2, n)``    ``for``(``int` `i = 1; i < n; i++)``    ``{``       ``x = (1 << x);``    ``}``    ` `    ``// Return Math.Pow(2, n) - 1``    ``return` `x - 1;``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``long` `n = 3;` `    ``Console.Write(count_Strings(n));``}``}` `// This code is contributed by Amit Katiyar`

## Javascript

 ``
Output:
`3`

Time Complexity: O(N)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up