Given an array **A[ ]** consisting of **N** distinct integers, the task is to find the number of elements which are **strictly greater **than all the elements preceding it and strictly greater than at least **K** elements on its right.

**Examples:**

Input:A[] = {2, 5, 1, 7, 3, 4, 0}, K = 3

Output:2

Explanation:

The only array elements satisfying the given conditions are:

5: Greater than all elements on its left {2} and at least K(= 3) elements on its right {1, 3, 4, 0}7: Greater than all elements on its left {2, 5, 1} and at least K(= 3) elements on its right {3, 4, 0}Therefore, the count is 2.

Input:A[] = {11, 2, 4, 7, 5, 9, 6, 3}, K = 2

Output:1

**Naive Approach: **

The simplest approach to solve the problem is to traverse the array and for each element, traverse all the elements on its left and check if all of them are smaller than it or not and traverse all elements on its right to check if at least **K** elements are smaller than it or not. For every element satisfying the conditions, increase **count**. Finally, print the value of **count**.

**Time Complexity:** O(N^{2})

**Auxiliary Space:** O(1)

**Efficient Approach:**

The above approach can be further optimized by using Self-Balancing BST. Follow the steps below:

- Traverse the array from right to left and insert all elements one by one in an AVL Tree
- Using the AVL Tree generate an array
**countSmaller[]**which contains the count of smaller elements on the right of every array element. - Traverse the array and for every
**i**, check if it is the maximum obtained so far and^{th}element**countSmaller[i]**is greater than or equal to**K**. - If so, increase
**count**. - Print the final value of
**count**as the answer.

Below is the implementation of the above approach:

## C++

`// C++ Program to implement ` `// the above appraoch ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Structure of an AVL Tree Node ` `struct` `node { ` ` ` `int` `key; ` ` ` `struct` `node* left; ` ` ` `struct` `node* right; ` ` ` `int` `height; ` ` ` `// Size of the tree rooted ` ` ` `// with this node ` ` ` `int` `size; ` `}; ` ` ` `// Utility function to get maximum ` `// of two integers ` `int` `max(` `int` `a, ` `int` `b); ` ` ` `// Utility function to get height ` `// of the tree rooted with N ` `int` `height(` `struct` `node* N) ` `{ ` ` ` `if` `(N == NULL) ` ` ` `return` `0; ` ` ` `return` `N->height; ` `} ` ` ` `// Utility function to find size of ` `// the tree rooted with N ` `int` `size(` `struct` `node* N) ` `{ ` ` ` `if` `(N == NULL) ` ` ` `return` `0; ` ` ` `return` `N->size; ` `} ` ` ` `// Utility function to get maximum ` `// of two integers ` `int` `max(` `int` `a, ` `int` `b) ` `{ ` ` ` `return` `(a > b) ? a : b; ` `} ` ` ` `// Helper function to allocates a ` `// new node with the given key ` `struct` `node* newNode(` `int` `key) ` `{ ` ` ` `struct` `node* node ` ` ` `= (` `struct` `node*) ` ` ` `malloc` `(` `sizeof` `(` `struct` `node)); ` ` ` `node->key = key; ` ` ` `node->left = NULL; ` ` ` `node->right = NULL; ` ` ` `node->height = 1; ` ` ` `node->size = 1; ` ` ` `return` `(node); ` `} ` ` ` `// Utility function to right rotate ` `// subtree rooted with y ` `struct` `node* rightRotate(` `struct` `node* y) ` `{ ` ` ` `struct` `node* x = y->left; ` ` ` `struct` `node* T2 = x->right; ` ` ` ` ` `// Perform rotation ` ` ` `x->right = y; ` ` ` `y->left = T2; ` ` ` ` ` `// Update heights ` ` ` `y->height = max(height(y->left), ` ` ` `height(y->right)) ` ` ` `+ 1; ` ` ` `x->height = max(height(x->left), ` ` ` `height(x->right)) ` ` ` `+ 1; ` ` ` ` ` `// Update sizes ` ` ` `y->size = size(y->left) ` ` ` `+ size(y->right) + 1; ` ` ` `x->size = size(x->left) ` ` ` `+ size(x->right) + 1; ` ` ` ` ` `// Return new root ` ` ` `return` `x; ` `} ` ` ` `// Utility function to left rotate ` `// subtree rooted with x ` `struct` `node* leftRotate(` `struct` `node* x) ` `{ ` ` ` `struct` `node* y = x->right; ` ` ` `struct` `node* T2 = y->left; ` ` ` ` ` `// Perform rotation ` ` ` `y->left = x; ` ` ` `x->right = T2; ` ` ` ` ` `// Update heights ` ` ` `x->height = max(height(x->left), ` ` ` `height(x->right)) ` ` ` `+ 1; ` ` ` `y->height = max(height(y->left), ` ` ` `height(y->right)) ` ` ` `+ 1; ` ` ` ` ` `// Update sizes ` ` ` `x->size = size(x->left) ` ` ` `+ size(x->right) + 1; ` ` ` `y->size = size(y->left) ` ` ` `+ size(y->right) + 1; ` ` ` ` ` `// Return new root ` ` ` `return` `y; ` `} ` ` ` `// Function to obtain Balance factor ` `// of node N ` `int` `getBalance(` `struct` `node* N) ` `{ ` ` ` `if` `(N == NULL) ` ` ` `return` `0; ` ` ` ` ` `return` `height(N->left) ` ` ` `- height(N->right); ` `} ` ` ` `// Function to insert a new key to the ` `// tree rooted with node ` `struct` `node* insert(` `struct` `node* node, ` `int` `key, ` ` ` `int` `* count) ` `{ ` ` ` `// Perform the normal BST rotation ` ` ` `if` `(node == NULL) ` ` ` `return` `(newNode(key)); ` ` ` ` ` `if` `(key < node->key) ` ` ` `node->left ` ` ` `= insert(node->left, key, count); ` ` ` `else` `{ ` ` ` `node->right ` ` ` `= insert(node->right, key, count); ` ` ` ` ` `// Update count of smaller elements ` ` ` `*count = *count + size(node->left) + 1; ` ` ` `} ` ` ` ` ` `// Update height and size of the ancestor ` ` ` `node->height = max(height(node->left), ` ` ` `height(node->right)) ` ` ` `+ 1; ` ` ` `node->size = size(node->left) ` ` ` `+ size(node->right) + 1; ` ` ` ` ` `// Get the balance factor of the ancestor ` ` ` `int` `balance = getBalance(node); ` ` ` ` ` `// Left Left Case ` ` ` `if` `(balance > 1 && key < node->left->key) ` ` ` `return` `rightRotate(node); ` ` ` ` ` `// Right Right Case ` ` ` `if` `(balance < -1 && key > node->right->key) ` ` ` `return` `leftRotate(node); ` ` ` ` ` `// Left Right Case ` ` ` `if` `(balance > 1 && key > node->left->key) { ` ` ` `node->left = leftRotate(node->left); ` ` ` `return` `rightRotate(node); ` ` ` `} ` ` ` ` ` `// Right Left Case ` ` ` `if` `(balance < -1 && key < node->right->key) { ` ` ` `node->right = rightRotate(node->right); ` ` ` `return` `leftRotate(node); ` ` ` `} ` ` ` ` ` `return` `node; ` `} ` ` ` `// Function to generate an array which contains ` `// count of smaller elements on the right ` `void` `constructLowerArray(` `int` `arr[], ` ` ` `int` `countSmaller[], ` ` ` `int` `n) ` `{ ` ` ` `int` `i, j; ` ` ` `struct` `node* root = NULL; ` ` ` ` ` `for` `(i = 0; i < n; i++) ` ` ` `countSmaller[i] = 0; ` ` ` ` ` `// Insert all elements in the AVL Tree ` ` ` `// and get the count of smaller elements ` ` ` `for` `(i = n - 1; i >= 0; i--) { ` ` ` `root = insert(root, arr[i], ` ` ` `&countSmaller[i]); ` ` ` `} ` `} ` ` ` `// Function to find the number ` `// of elements which are greater ` `// than all elements on its left ` `// and K elements on its right ` `int` `countElements(` `int` `A[], ` `int` `n, ` `int` `K) ` `{ ` ` ` ` ` `int` `count = 0; ` ` ` ` ` `// Stores the count of smaller ` ` ` `// elements on its right ` ` ` `int` `* countSmaller ` ` ` `= (` `int` `*)` `malloc` `(` `sizeof` `(` `int` `) * n); ` ` ` `constructLowerArray(A, countSmaller, n); ` ` ` ` ` `int` `maxi = INT_MIN; ` ` ` `for` `(` `int` `i = 0; i <= (n - K - 1); i++) { ` ` ` `if` `(A[i] > maxi && countSmaller[i] >= K) { ` ` ` `count++; ` ` ` `maxi = A[i]; ` ` ` `} ` ` ` `} ` ` ` ` ` `return` `count; ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` ` ` `int` `A[] = { 2, 5, 1, 7, 3, 4, 0 }; ` ` ` `int` `n = ` `sizeof` `(A) / ` `sizeof` `(` `int` `); ` ` ` `int` `K = 3; ` ` ` ` ` `cout << countElements(A, n, K); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

**Output:**

2

**Time Complexity: **O(NlogN)

**Auxiliary Space: **O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Count of array elements which are greater than all elements on its left
- Reduce the array by deleting elements which are greater than all elements to its left
- Count smaller elements on right side and greater elements on left side using Binary Index Tree
- Count of elements whose absolute difference with the sum of all the other elements is greater than k
- Count elements such that there are exactly X elements with values greater than or equal to X
- Minimum elements to change so that for an index i all elements on the left are -ve and all elements on the right are +ve
- Merge first two minimum elements of the array until all the elements are greater than K
- Find all elements in array which have at-least two greater elements
- Count of greater elements for each element in the Array
- Count the number of elements which are greater than any of element on right side of an array
- Noble integers in an array (count of greater elements is equal to value)
- Count of Array elements to be divided by 2 to make at least K elements equal
- Count elements in first Array with absolute difference greater than K with an element in second Array
- Count of elements in first Array greater than second Array with each element considered only once
- Count of array elements which is smaller than both its adjacent elements
- Minimize swaps required to maximize the count of elements replacing a greater element in an Array
- Length of longest subarray in which elements greater than K are more than elements not greater than K
- Count array elements that divide the sum of all other elements
- Count of elements not divisible by any other elements of Array
- Count number of elements between two given elements in array

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.