Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Count of all subsequences having adjacent elements with different parity

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array arr[] of size N, the task is to find the number of non-empty subsequences from the given array such that no two adjacent elements of the subsequence have the same parity.

Examples:  

Input: arr[] = [5, 6, 9, 7] 
Output:
Explanation: 
All such subsequences of given array will be {5}, {6}, {9}, {7}, {5, 6}, {6, 7}, {6, 9}, {5, 6, 9}, {5, 6, 7}.
Input: arr[] = [2, 3, 4, 8] 
Output: 9  

Naive Approach: Generate all non-empty subsequences and select the ones with alternate odd-even or even-odd numbers and count all such subsequences to obtain the answer. 
Time Complexity: O(2N)
Efficient Approach: 
The above approach can be optimized using Dynamic Programming. Follow the steps below to solve the problem: 
 

  • Consider a dp[] matrix of dimensions (N+1)*(2).
  • dp[i][0] stores the count of subsequences till ith index ending with an even element.
  • dp[i][1] stores the count of subsequences till ith index ending with an odd element.
  • Hence, for every ith element, check if the element is even or odd and proceed by including as well as excluding the ith element.
  • Hence, the recurrence relation if the ith element is odd: 

 dp[i][1] = dp[i – 1][0] (Including the ith element by considering all subsequences ending with even element till (i – 1)th index) + 1 + dp[i – 1][1] (Excluding the ith element)

  • Similarly, if the ith element is even:

 dp[i][0] = dp[i – 1][1] (Including the ith element by considering all subsequences ending with odd element till (i – 1)th index) + 1 + dp[i – 1][0] (Excluding the ith element) 

  • Finally, the sum of dp[n][0], which contains all such subsequences ending with an even element, and dp[n][1], which contains all such subsequences ending with an odd element, is the required answer.

Below is the implementation of the above approach: 

C++




// C++ Program to implement the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find required subsequences
int validsubsequences(int arr[], int n)
{
    // dp[i][0]: Stores the number of
    // subsequences till i-th index
    // ending with even element
    // dp[i][1]: Stores the number of
    // subsequences till i-th index
    // ending with odd element
    long long int dp[n + 1][2];
 
    // Initialise the dp[][] with 0.
    for (int i = 0; i < n + 1; i++) {
        dp[i][0] = 0;
        dp[i][1] = 0;
    }
 
    for (int i = 1; i <= n; i++) {
 
        // If odd element is
        // encountered
        if (arr[i - 1] % 2) {
 
            // Considering i-th element
            // will be present in
            // the subsequence
            dp[i][1] += 1;
 
            // Appending i-th element to all
            // non-empty subsequences
            // ending with even element
            // till (i-1)th indexes
            dp[i][1] += dp[i - 1][0];
 
            // Considering ith element will
            // not be present in
            // the subsequence
            dp[i][1] += dp[i - 1][1];
 
            dp[i][0] += dp[i - 1][0];
        }
        else {
 
            // Considering i-th element
            // will be present in
            // the subsequence
            dp[i][0] += 1;
 
            // Appending i-th element to all
            // non-empty subsequences
            // ending with odd element
            // till (i-1)th indexes
            dp[i][0] += dp[i - 1][1];
 
            // Considering ith element will
            // not be present in
            // the subsequence
            dp[i][0] += dp[i - 1][0];
            dp[i][1] += dp[i - 1][1];
        }
    }
 
    // Count of all valid subsequences
    return dp[n][0] + dp[n][1];
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 6, 9, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << validsubsequences(arr, n);
 
    return 0;
}

Java




// Java Program implementation
// of the approach
import java.util.*;
import java.io.*;
 
class GFG{
 
// Function to find required subsequences    
static int validsubsequences(int arr[], int n)
{
     
    // dp[i][0]: Stores the number of
    // subsequences till i-th index
    // ending with even element
    // dp[i][1]: Stores the number of
    // subsequences till i-th index
    // ending with odd element
    long dp[][] = new long [n + 1][2];
 
    // Initialise the dp[][] with 0.
    for(int i = 0; i < n + 1; i++)
    {
        dp[i][0] = 0;
        dp[i][1] = 0;
    }
     
    for(int i = 1; i <= n; i++)
    {
         
        // If odd element is
        // encountered
        if (arr[i - 1] % 2 != 0)
        {
 
            // Considering i-th element
            // will be present in
            // the subsequence
            dp[i][1] += 1;
 
            // Appending i-th element to all
            // non-empty subsequences
            // ending with even element
            // till (i-1)th indexes
            dp[i][1] += dp[i - 1][0];
 
            // Considering ith element will
            // not be present in
            // the subsequence
            dp[i][1] += dp[i - 1][1];
            dp[i][0] += dp[i - 1][0];
        }
        else
        {
 
            // Considering i-th element
            // will be present in
            // the subsequence
            dp[i][0] += 1;
 
            // Appending i-th element to all
            // non-empty subsequences
            // ending with odd element
            // till (i-1)th indexes
            dp[i][0] += dp[i - 1][1];
 
            // Considering ith element will
            // not be present in
            // the subsequence
            dp[i][0] += dp[i - 1][0];
            dp[i][1] += dp[i - 1][1];
        }
    }
 
    // Count of all valid subsequences
    return (int)(dp[n][0] + dp[n][1]);
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 5, 6, 9, 7 };
    int n = arr.length;
         
    System.out.print(validsubsequences(arr, n));
}
}
 
// This code is contributed by code_hunt

Python3




# Python3 program to implement the
# above approach
 
# Function to find required subsequences
def validsubsequences(arr, n):
 
    # dp[i][0]: Stores the number of
    # subsequences till i-th index
    # ending with even element
    # dp[i][1]: Stores the number of
    # subsequences till i-th index
    # ending with odd element
 
    # Initialise the dp[][] with 0.
    dp = [[0 for i in range(2)]
             for j in range(n + 1)]
              
    for i in range(1, n + 1):
 
        # If odd element is
        # encountered
        if(arr[i - 1] % 2):
 
            # Considering i-th element
            # will be present in
            # the subsequence
            dp[i][1] += 1
 
            # Appending i-th element to all
            # non-empty subsequences
            # ending with even element
            # till (i-1)th indexes
            dp[i][1] += dp[i - 1][0]
 
            # Considering ith element will
            # not be present in
            # the subsequence
            dp[i][1] += dp[i - 1][1]
            dp[i][0] += dp[i - 1][0]
 
        else:
 
            # Considering i-th element
            # will be present in
            # the subsequence
            dp[i][0] += 1
 
            # Appending i-th element to all
            # non-empty subsequences
            # ending with odd element
            # till (i-1)th indexes
            dp[i][0] += dp[i - 1][1]
 
            # Considering ith element will
            # not be present in
            # the subsequence
            dp[i][0] += dp[i - 1][0]
            dp[i][1] += dp[i - 1][1]
 
    # Count of all valid subsequences
    return dp[n][0] + dp[n][1]
 
# Driver code
if __name__ == '__main__':
 
    arr = [ 5, 6, 9, 7 ]
    n = len(arr)
 
    print(validsubsequences(arr, n))
 
# This code is contributed by Shivam Singh

C#




// C# program implementation
// of the approach
using System;
 
class GFG{
 
// Function to find required subsequences    
static int validsubsequences(int[] arr, int n)
{
     
    // dp[i][0]: Stores the number of
    // subsequences till i-th index
    // ending with even element
    // dp[i][1]: Stores the number of
    // subsequences till i-th index
    // ending with odd element
    long[,] dp = new long [n + 1, 2];
 
    // Initialise the dp[][] with 0.
    for(int i = 0; i < n + 1; i++)
    {
        dp[i, 0] = 0;
        dp[i, 1] = 0;
    }
     
    for(int i = 1; i <= n; i++)
    {
         
        // If odd element is
        // encountered
        if (arr[i - 1] % 2 != 0)
        {
 
            // Considering i-th element
            // will be present in
            // the subsequence
            dp[i, 1] += 1;
 
            // Appending i-th element to all
            // non-empty subsequences
            // ending with even element
            // till (i-1)th indexes
            dp[i, 1] += dp[i - 1, 0];
 
            // Considering ith element will
            // not be present in
            // the subsequence
            dp[i, 1] += dp[i - 1, 1];
            dp[i, 0] += dp[i - 1, 0];
        }
        else
        {
 
            // Considering i-th element
            // will be present in
            // the subsequence
            dp[i, 0] += 1;
 
            // Appending i-th element to all
            // non-empty subsequences
            // ending with odd element
            // till (i-1)th indexes
            dp[i, 0] += dp[i - 1, 1];
 
            // Considering ith element will
            // not be present in
            // the subsequence
            dp[i, 0] += dp[i - 1, 0];
            dp[i, 1] += dp[i - 1, 1];
        }
    }
 
    // Count of all valid subsequences
    return (int)(dp[n, 0] + dp[n, 1]);
}
 
// Driver code
public static void Main()
{
    int[] arr = { 5, 6, 9, 7 };
    int n = arr.Length;
         
    Console.Write(validsubsequences(arr, n));
}
}
 
// This code is contributed by chitranayal

Javascript




<script>
 
// Javascript program for the above approach
  
// Function to find required subsequences    
function validsubsequences(arr, n)
{
       
    // dp[i][0]: Stores the number of
    // subsequences till i-th index
    // ending with even element
    // dp[i][1]: Stores the number of
    // subsequences till i-th index
    // ending with odd element
    let dp = new Array(n + 1);
    for (var i = 0; i < dp.length; i++) {
    dp[i] = new Array(2);
    }
   
    // Initialise the dp[][] with 0.
    for(let i = 0; i < n + 1; i++)
    {
        dp[i][0] = 0;
        dp[i][1] = 0;
    }
       
    for(let i = 1; i <= n; i++)
    {
           
        // If odd element is
        // encountered
        if (arr[i - 1] % 2 != 0)
        {
   
            // Considering i-th element
            // will be present in
            // the subsequence
            dp[i][1] += 1;
   
            // Appending i-th element to all
            // non-empty subsequences
            // ending with even element
            // till (i-1)th indexes
            dp[i][1] += dp[i - 1][0];
   
            // Considering ith element will
            // not be present in
            // the subsequence
            dp[i][1] += dp[i - 1][1];
            dp[i][0] += dp[i - 1][0];
        }
        else
        {
   
            // Considering i-th element
            // will be present in
            // the subsequence
            dp[i][0] += 1;
   
            // Appending i-th element to all
            // non-empty subsequences
            // ending with odd element
            // till (i-1)th indexes
            dp[i][0] += dp[i - 1][1];
   
            // Considering ith element will
            // not be present in
            // the subsequence
            dp[i][0] += dp[i - 1][0];
            dp[i][1] += dp[i - 1][1];
        }
    }
   
    // Count of all valid subsequences
    return (dp[n][0] + dp[n][1]);
}
 
// Driver Code
 
    let arr = [ 5, 6, 9, 7 ];
    let n = arr.length;
           
    document.write(validsubsequences(arr, n));
 
</script>

Output: 

9

Time complexity: O(N) 
Auxiliary Space complexity: O(N)
 


My Personal Notes arrow_drop_up
Last Updated : 11 May, 2021
Like Article
Save Article
Similar Reads
Related Tutorials