Count of all pairs in an Array with minimum absolute difference

Given an integer array arr[] of size N, the task is to count the total number of distinct pairs having minimum absolute difference. 
Examples: 
 

Input: arr[] = {4, 2, 1, 3} 
Output:
Explanation: 
The minimum absolute difference between the pairs {1, 2}, {2, 3}, {3, 4} is 1.
Input: arr[] = {1, 3, 8, 10, 15} 
Output:
Explanation: 
The minimum absolute difference between the pairs {1, 3}, {8, 10} is 2. 
 

 

Approach: The idea is to count the frequency of the minimum absolute difference of the adjacent elements of the sorted elements of the given array. Follow the steps below to solve the problem: 
 

  1. Sort the given array arr[].
  2. Compare all adjacent pairs in the sorted array and find the minimum absolute difference between all adjacent pairs.
  3. Finally, count all the adjacent pairs having difference equal to minimum difference.

Below is the implementation of the above approach:
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count of all
// pairs having minimal absolute difference
int numberofpairs(int arr[], int N)
{
    // Stores the count of pairs
    int answer = 0;
  
    // Sort the array
    sort(arr, arr + N);
  
    // Stores the minimum difference
    // between adjacent pairs
    int minDiff = INT_MAX;
    for (int i = 0; i < N - 1; i++)
  
        // Update the minimum
        // difference between pairs
        minDiff = min(minDiff,
                      arr[i + 1] - arr[i]);
  
    for (int i = 0; i < N - 1; i++) {
  
        if (arr[i + 1] - arr[i] == minDiff)
  
            // Increase count of
            // pairs with difference
            // equal to that of
            // minimum difference
            answer++;
    }
  
    // Return the final count
    return answer;
}
  
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 4, 2, 1, 3 };
    int N = (sizeof arr) / (sizeof arr[0]);
  
    // Function Call
    cout << numberofpairs(arr, N) << "\n";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above 
import java.util.Arrays; 
class GFG{
   
// Function to return the count of all
// pairs having minimal absolute difference
static int numberofpairs(int []arr, int N)
{
    // Stores the count of pairs
    int answer = 0;
   
    // Sort the array
    Arrays.sort(arr);
   
    // Stores the minimum difference
    // between adjacent pairs
    int minDiff = 10000000;
    for (int i = 0; i < N - 1; i++)
   
        // Update the minimum
        // difference between pairs
        minDiff = Math.min(minDiff,
                           arr[i + 1] - arr[i]);
   
    for (int i = 0; i < N - 1; i++) 
    {
        if (arr[i + 1] - arr[i] == minDiff)
   
            // Increase count of
            // pairs with difference
            // equal to that of
            // minimum difference
            answer++;
    }
   
    // Return the final count
    return answer;
}
   
// Driver Code
public static void main(String[] args) 
{
    // Given array arr[]
    int arr[] = { 4, 2, 1, 3 };
    int N = arr.length;
   
    // Function Call
    System.out.print(numberofpairs(arr, N)); 
}
}
  
// This code is contributed by rock_cool

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
  
# Function to return the count of all 
# pairs having minimal absolute difference 
def numberofpairs(arr, N):
      
    # Stores the count of pairs 
    answer = 0
      
    # Sort the array 
    arr.sort()
      
    # Stores the minimum difference 
    # between adjacent pairs 
    minDiff = 10000000
    for i in range(0, N - 1):
          
        # Update the minimum 
        # difference between pairs 
        minDiff = min(minDiff, 
                      arr[i + 1] - arr[i])
          
    for i in range(0, N - 1):
        if arr[i + 1] - arr[i] == minDiff:
              
            # Increase count of pairs 
            # with difference equal to 
            # that of minimum difference 
            answer += 1
              
    # Return the final count 
    return answer
  
# Driver code
if __name__ == '__main__':
      
    # Given array arr[]
    arr = [ 4, 2, 1, 3 ]
    N = len(arr)
      
    # Function call
    print(numberofpairs(arr,N))
  
# This code is contributed by virusbuddah_

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach 
using System;
class GFG{
  
// Function to return the count of all
// pairs having minimal absolute difference
static int numberofpairs(int []arr, int N)
{
      
    // Stores the count of pairs
    int answer = 0;
  
    // Sort the array
    Array.Sort(arr);
  
    // Stores the minimum difference
    // between adjacent pairs
    int minDiff = 10000000;
    for(int i = 0; i < N - 1; i++)
  
        // Update the minimum
        // difference between pairs
        minDiff = Math.Min(minDiff,
                           arr[i + 1] - 
                           arr[i]);
  
    for(int i = 0; i < N - 1; i++) 
    {
        if (arr[i + 1] - arr[i] == minDiff)
  
            // Increase count of
            // pairs with difference
            // equal to that of
            // minimum difference
            answer++;
    }
  
    // Return the final count
    return answer;
}
  
// Driver Code
public static void Main(String[] args) 
{
      
    // Given array arr[]
    int []arr = { 4, 2, 1, 3 };
    int N = arr.Length;
  
    // Function Call
    Console.Write(numberofpairs(arr, N)); 
}
}
  
// This code is contributed by shivanisinghss2110

chevron_right


Output: 

3

Time Complexity: O(N*log N) 
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.