# Count of all N digit numbers such that num + Rev(num) = 10^N – 1

Given an integer **N**, the task is to find the count of all **N** digit numbers such that **num + Rev(num) = 10 ^{N} – 1**

**Examples:**

Input:N = 2Output:9

All possible numbers are

18 + 81 = 99

27 + 72 = 99

36 + 45 = 99

45 + 54 = 99

54 + 45 = 99

63 + 54 = 99

72 + 27 = 99

81 + 18 = 99

90 + 09 = 99Input:N = 4Output:90

**Approach** There are 2 cases:

If **n is odd** then answer will be 0.

Let

n = 3thennum = d1d2d3andrev(num) = d3d2d1

num + rev(num) should be 999 since n = 3.

So the below equations must be satisfied

d1 + d3 = 9 … (1)

d2 + d2 = 9 … (2)

d3 + d1 = 9 … (3)

Considering equation 2:

d2 + d2 = 9

2 * d2 = 9

d2 = 4.5 which is not possible because the digit of a number should always be a whole number.

Therefore If n is odd then answer will be 0.

If **n is even** then answer will be **9 * 10 ^{(N / 2 – 1)}**.

Let

n = 4thennum = d1d2d3d4andrev(num) = d4d3d2d1

So the below equations should be satisfied

d1 + d4 = 9 … (1)

d2 + d3 = 9 … (2)

d3 + d2 = 9 … (3)

d4 + d1 = 9 … (4)

Considering equation 1:d1 + d4 = 9. It can be true in 9 ways:

(1 + 8), (2 + 7), (3 + 6), (4 + 5), (5 + 4), (6 + 3), (7 + 2), (8 + 1) and (9 + 0)

Similarly other equations will also have 9 solutions + 1 more solution since the remaining digits are not the first and last digit of the number and we can take sum of the form(0 + 9).

And since half of the equations are same

Therefore, if n is even then answer will be9 * 10.^{(N / 2 – 1)}

Below is the implementation of the above approach

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the` `// count of such numbers` `int` `countNumbers(` `int` `n)` `{` ` ` `// If n is odd` ` ` `if` `(n % 2 == 1)` ` ` `return` `0;` ` ` `return` `(9 * ` `pow` `(10, n / 2 - 1));` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 2;` ` ` `cout << countNumbers(n);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `class` `GFG {` ` ` `// Function to return the` ` ` `// count of such numbers` ` ` `static` `int` `countNumbers(` `int` `n)` ` ` `{` ` ` `// If n is odd` ` ` `if` `(n % ` `2` `== ` `1` `)` ` ` `return` `0` `;` ` ` `return` `(` `9` `* (` `int` `)Math.pow(` `10` `, n / ` `2` `- ` `1` `));` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `main(String args[])` ` ` `{` ` ` `int` `n = ` `2` `;` ` ` `System.out.print(countNumbers(n));` ` ` `}` `}` |

## Python3

`# Python3 implementation of the approach` `# Function to return the` `# count of such numbers` `def` `countNumbers(n):` ` ` `# If n is odd` ` ` `if` `n ` `%` `2` `=` `=` `1` `:` ` ` `return` `0` ` ` `return` `(` `9` `*` `pow` `(` `10` `, n ` `/` `/` `2` `-` `1` `))` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `n ` `=` `2` ` ` `print` `(countNumbers(n))` `# This code is contributed` `# by Rituraj Jain` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG {` ` ` `// Function to return the` ` ` `// count of such numbers` ` ` `static` `int` `countNumbers(` `int` `n)` ` ` `{` ` ` `// If n is odd` ` ` `if` `(n % 2 == 1)` ` ` `return` `0;` ` ` `return` `(9 * (` `int` `)Math.Pow(10, n / 2 - 1));` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `Main()` ` ` `{` ` ` `int` `n = 2;` ` ` `Console.WriteLine(countNumbers(n));` ` ` `}` `}` |

## PHP

`<?php` `// PHP implementation of the approach` `// Function to return the` `// count of such numbers` `function` `countNumbers(` `$n` `)` `{` ` ` `// If n is odd` ` ` `if` `(` `$n` `% 2 == 1)` ` ` `return` `0;` ` ` `return` `(9 * (int)pow(10, ` `$n` `/ 2 - 1));` `}` `// Driver code` `$n` `= 2;` `echo` `(countNumbers(` `$n` `));` `// This code is contributed by Code_Mech` |

## Javascript

`<script>` `// Javascript implementation of the approach` `// Function to return the` `// count of such numbers` `function` `countNumbers(n)` `{` ` ` `// If n is odd` ` ` `if` `(n % 2 == 1)` ` ` `return` `0;` ` ` `return` `(9 * Math.pow(10, parseInt(n / 2) - 1));` `}` `// Driver code` `var` `n = 2;` `document.write(countNumbers(n));` `</script>` |

**Output:**

9

**Time Complexity:** O(1)