Open In App
Related Articles

Count of adjacent Vowel Consonant Pairs

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a string, the task is to count the number of adjacent pairs such that the first element of the pair is a consonant and the second element is a vowel. That is find the number of pairs (i, i+1) such that the ith character of this string is a consonant and the (i+1)th character is a vowel.
Examples: 
 

Input :  str = "bazeci"
Output : 3

Input : str = "abu"
Output : 1

 

Algorithm
 

  1. We have to find all possible adjacent consonant-vowel pairs.
  2. Insert all of the vowels in a set or hash, so that we can check if the current character is a vowel or consonant in constant time.
  3. We run a loop for the first n-1 elements and check, if the ith character is a consonant, and the (i+1)th character a vowel or not.
  4. If so, we increment the count, else we continue till the end of the string.

Below is the implementation of the above approach: 
 

C++




// C++ Program to implement the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the adjacent pairs of
// consonant and vowels in the string
int countPairs(string s)
{
    // Using a set to store the vowels so that
    // checking each character becomes easier
    set<char> st;
    st.insert('a');
    st.insert('e');
    st.insert('i');
    st.insert('o');
    st.insert('u');
 
    // Variable to store number of
    // consonant-vowel pairs
    int count = 0;
 
    int n = s.size();
 
    for (int i = 0; i < n - 1; i++) {
 
        // If the ith character is not found in the set,
        // means it is a consonant
        // And if the (i+1)th character is found in the set,
        // means it is a vowel
        // We increment the count of such pairs
        if (st.find(s[i]) == st.end() && st.find(s[i + 1]) != st.end())
            count++;
    }
 
    return count;
}
 
// Driver Code
int main()
{
    string s = "geeksforgeeks";
 
    cout << countPairs(s);
 
    return 0;
}


Java




// Java Program to implement the above approach
import java.util.*;
 
class Sol
{
     
// Function to count the adjacent pairs of
// consonant and vowels in the String
static int countPairs(String s)
{
    // Using a set to store the vowels so that
    // checking each character becomes easier
    Set<Character> st=new HashSet<Character>();
    st.add('a');
    st.add('e');
    st.add('i');
    st.add('o');
    st.add('u');
 
    // Variable to store number of
    // consonant-vowel pairs
    int count = 0;
 
    int n = s.length();
 
    for (int i = 0; i < n - 1; i++)
    {
 
        // If the ith character is not found in the set,
        // means it is a consonant
        // And if the (i+1)th character is found in the set,
        // means it is a vowel
        // We increment the count of such pairs
        if (st.contains(s.charAt(i)) && !st.contains(s.charAt(i + 1)))
            count++;
    }
 
    return count;
}
 
// Driver Code
public static void main(String args[])
{
    String s = "geeksforgeeks";
 
    System.out.println( countPairs(s));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 Program to implement the above approach
 
# Function to count the adjacent pairs of
# consonant and vowels in the string
def countPairs(s) :
 
    # Using a set to store the vowels so that
    # checking each character becomes easier
    st = set();
    st.add('a');
    st.add('e');
    st.add('i');
    st.add('o');
    st.add('u');
 
    # Variable to store number of
    # consonant-vowel pairs
    count = 0;
 
    n = len(s);
 
    for i in range(n - 1) :
         
        # If the ith character is not found in the set,
        # means it is a consonant
        # And if the (i+1)th character is found in the set,
        # means it is a vowel
        # We increment the count of such pairs
        if (s[i] not in st and s[i + 1] in st) :
            count += 1;
 
    return count;
 
# Driver Code
if __name__ == "__main__" :
     
    s = "geeksforgeeks";
 
    print(countPairs(s));
     
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
     
// Function to count the adjacent pairs of
// consonant and vowels in the String
static int countPairs(String s)
{
    // Using a set to store the vowels so that
    // checking each character becomes easier
    HashSet<char> st = new HashSet<char>();
    st.Add('a');
    st.Add('e');
    st.Add('i');
    st.Add('o');
    st.Add('u');
 
    // Variable to store number of
    // consonant-vowel pairs
    int count = 0;
 
    int n = s.Length;
 
    for (int i = 0; i < n - 1; i++)
    {
 
        // If the ith character is not found in the set,
        // means it is a consonant
        // And if the (i+1)th character is found in the set,
        // means it is a vowel
        // We increment the count of such pairs
        if (st.Contains(s[i]) && !st.Contains(s[i + 1]))
            count++;
    }
 
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
    String s = "geeksforgeeks";
 
    Console.Write( countPairs(s));
}
}
 
// This code has been contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to count the adjacent pairs of
// consonant and vowels in the String
function countPairs(s)
{
    // Using a set to store the vowels so that
    // checking each character becomes easier
    let st=new Set();
    st.add('a');
    st.add('e');
    st.add('i');
    st.add('o');
    st.add('u');
 
    // Variable to store number of
    // consonant-vowel pairs
    let count = 0;
 
    let n = s.length;
 
    for (let i = 0; i < n - 1; i++)
    {
 
        // If the ith character is not found in the set,
        // means it is a consonant
        // And if the (i+1)th character is found in the set,
        // means it is a vowel
        // We increment the count of such pairs
        if (st.has(s[i]) && !st.has(s[i + 1]))
            count++;
    }
 
    return count;
}
 
 
// Driver Code
 
     let s = "geeksforgeeks";
 
    document.write( countPairs(s));
  
 // This code is contributed by sanjoy_62.
</script>


Output: 

3

 

Time Complexity: O(N), where N is the length of the string. 
Auxiliary Space: O(1). We have used additional space to store vowels in a Hash but since number of vowels is only 5 so, the extra space used is considered as constant.
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 02 Jun, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials