# Count numbers which can be represented as sum of same parity primes

Given an arr[] of positive integers you have to count how many numbers can be represented as sum of same parity prime numbers(can be same)

**Examples:**

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

Input : arr[] = {1, 3, 4, 6} Output : 2 4 = 2+2, 6 = 3+3 Input : arr[] = {4, 98, 0, 36, 51} Output : 3

1. If two numbers of same parity are added then they would be always even, so all odd numbers in the array can never contribute to answer.

2. Talking about 0 and 2 both cannot be represented by sum of same parity prime numbers.

3. Rest of all numbers will contribute to the answer (Refer https://www.geeksforgeeks.org/program-for-goldbachs-conjecture-two-primes-with-given-sum/)

So, we have to just iterate over the entire array and find out number of even elements not equal to 0 and 2.

## C++

`#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to calculate count` `int` `calculate(` `int` `* array, ` `int` `size)` `{` ` ` `int` `count = 0;` ` ` `for` `(` `int` `i = 0; i < size; i++)` ` ` `if` `(array[i] % 2 == 0 &&` ` ` `array[i] != 0 &&` ` ` `array[i] != 2)` ` ` `count++;` ` ` ` ` `return` `count;` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `a[] = { 1, 3, 4, 6 };` ` ` `int` `size = ` `sizeof` `(a) / ` `sizeof` `(a[0]);` ` ` `cout << calculate(a, size);` `}` |

## Java

`// Java program to Count numbers` `// which can be represented as` `// sum of same parity primes` `import` `java.util.*;` `class` `GFG` `{` `// Function to calculate count` `public` `static` `int` `calculate(` `int` `ar[],` ` ` `int` `size)` `{` ` ` `int` `count = ` `0` `;` ` ` ` ` `for` `(` `int` `i = ` `0` `; i < size; i++)` ` ` `if` `(ar[i] % ` `2` `== ` `0` `&&` ` ` `ar[i] != ` `0` `&&` ` ` `ar[i] != ` `2` `)` ` ` `count++;` ` ` ` ` `return` `count;` `}` `// Driver code` `public` `static` `void` `main (String[] args)` `{` ` ` `int` `a[] = { ` `1` `, ` `3` `, ` `4` `, ` `6` `};` ` ` `int` `size = a.length;` ` ` `System.out.print(calculate(a, size));` `}` `}` `// This code is contributed` `// by ankita_saini` |

## Python3

`# Function to calculate count` `def` `calculate(array, size):` ` ` `count ` `=` `0` ` ` `for` `i ` `in` `range` `(size):` ` ` `if` `(array[i] ` `%` `2` `=` `=` `0` `and` ` ` `array[i] !` `=` `0` `and` ` ` `array[i] !` `=` `2` `):` ` ` `count ` `+` `=` `1` ` ` `return` `count` `# Driver Code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `a ` `=` `[ ` `1` `, ` `3` `, ` `4` `, ` `6` `]` ` ` `size ` `=` `len` `(a)` ` ` `print` `(calculate(a, size))` `# This code is contributed` `# by ChitraNayal` |

## C#

`// C# program to Count numbers` `// which can be represented as` `// sum of same parity primes` `using` `System;` `class` `GFG` `{` `// Function to calculate count` `public` `static` `int` `calculate(` `int` `[]ar,` ` ` `int` `size)` `{` ` ` `int` `count = 0;` ` ` ` ` `for` `(` `int` `i = 0; i < size; i++)` ` ` `if` `(ar[i] % 2 == 0 &&` ` ` `ar[i] != 0 &&` ` ` `ar[i] != 2)` ` ` `count++;` ` ` ` ` `return` `count;` `}` `// Driver code` `static` `public` `void` `Main (String []args)` `{` ` ` `int` `[]a = { 1, 3, 4, 6 };` ` ` `int` `size = a.Length;` ` ` `Console.WriteLine(calculate(a, size));` `}` `}` `// This code is contributed` `// by Arnab Kundu` |

## PHP

`<?php` `// Function to calculate count` `function` `calculate(&` `$array` `, ` `$size` `)` `{` ` ` `$count` `= 0;` ` ` `for` `(` `$i` `= 0; ` `$i` `< ` `$size` `; ` `$i` `++)` ` ` `if` `(` `$array` `[` `$i` `] % 2 == 0 &&` ` ` `$array` `[` `$i` `] != 0 &&` ` ` `$array` `[` `$i` `] != 2)` ` ` `$count` `++;` ` ` ` ` `return` `$count` `;` `}` `// Driver Code` `$a` `= ` `array` `(1, 3, 4, 6 );` `$size` `= sizeof(` `$a` `);` `echo` `calculate(` `$a` `, ` `$size` `);` `// This code is contributed` `// by ChitraNayal` `?>` |

## Javascript

`<script>` `// Javascript program to Count numbers` `// which can be represented as` `// sum of same parity primes` `// Function to calculate count` `function` `calculate(ar, size)` `{` ` ` `var` `count = 0;` ` ` ` ` `for` `(i = 0; i < size; i++)` ` ` `if` `(ar[i] % 2 == 0 &&` ` ` `ar[i] != 0 && ar[i] != 2)` ` ` `count++;` ` ` `return` `count;` `}` `// Driver code` `var` `a = [ 1, 3, 4, 6 ];` `var` `size = a.length;` `document.write(calculate(a, size));` `// This code is contributed by todaysgaurav` `</script>` |

**Output:**

2