Count numbers in range L-R that are divisible by all of its non-zero digits

Given a range l – r (inclusive), count the numbers that are divisible by all of its non-zero digits.

Examples:

Input : 1 9 
Output : 9
Explanation: 
all the numbers are divisible by 
their digits in the range 1-9.

Input : 10 20 
Output : 5
Explanation: 
10, 11, 12, 15, 20 

Approach:
1. Run a loop to generate every number from l and r.
2. Check if every non-zero digit of that number divides the number or not.
3. Keep a count of all numbers that are completely divisible by its digits.
4. Print the count of numbers.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to
// Count numbers in
// range L-R that are
// divisible by
// all of its non-zero
// digits
#include <bits/stdc++.h>
using namespace std;
  
// check if the number is 
// divisible by the digits.
bool check(int n)
{
    int m = n;
    while (n) {
        int r = n % 10;
        if (r > 0) 
            if ((m % r) != 0)
                return false;        
        n /= 10;
    }
  
    return true;
}
  
// function to calculate the
// number of numbers
int count(int l, int r)
{
    int ans = 0;
    for (int i = l; i <= r; i++) 
        if (check(i))
            ans += 1;    
    return ans;
}
  
// Driver function
int main()
{
    int l = 10, r = 20;
    cout << count(l, r);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to Count 
// numbers in range L-R
// that are divisible by
// all of its non-zero 
// digits
import java.io.*;
  
class GFG {
  
    // check if the number
    // is divisible by the
    // digits.
    static boolean check(int n)
    {
        int m = n;
      
        while (n != 0)
        {
            int r = n % 10;
          
            if (r > 0
                if ((m % r) != 0)
                    return false;     
          
            n /= 10;
        }
      
        return true;
    }
      
    // function to calculate
    // the number of numbers
    static int count(int l, int r)
    {
        int ans = 0;
          
        for (int i = l; i <= r; i++) 
            if (check(i))
                ans += 1
        return ans;
    }
      
    // Driver function
    public static void main(String args[])
    {
        int l = 10, r = 20;
          
        System.out.println(count(10, 20));
    }
}
  
// This code is contributed by Nikita Tiwari.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program
# to Count numbers in
# range L-R that are 
# divisible by all of
# its non-zero digits
  
  
# check if the number is 
# divisible by the digits.
def check(n) :
    m = n
    while (n != 0) :
        r = n % 10
        if (r > 0) :
            if ((m % r) != 0) :
                return False    
        n = n // 10
      
    return True
      
  
# function to calculate the
# number of numbers
def count(l, r) :
    ans = 0
    for i in range(l, r+1) :
        if (check(i)) :
            ans = ans + 1
    return ans
  
# Driver function
l = 10
r = 20
print(count(l, r))
  
# This code is contributed by Nikita Tiwari.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to Count 
// numbers in range L-R
// that are divisible by
// all of its non-zero 
// digits
using System;
  
class GFG {
  
    // check if the number
    // is divisible by the
    // digits.
    static bool check(int n)
    {
        int m = n;
      
        while (n != 0)
        {
            int r = n % 10;
          
            if (r > 0) 
                if ((m % r) != 0)
                    return false
          
            n /= 10;
        }
      
        return true;
    }
      
    // function to calculate
    // the number of numbers
    static int count(int l, int r)
    {
        int ans = 0;
          
        for (int i = l; i <= r; i++) 
            if (check(i))
                ans += 1; 
        return ans;
    }
      
    // Driver function
    public static void Main()
    {
        int l = 10, r = 20;
          
        Console.WriteLine(count(l, r));
    }
}
  
// This code is contributed by Vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to Count numbers
// in range L-R that are
// divisible by all of its 
// non-zero digits
  
// check if the number is 
// divisible by the digits.
function check($n)
{
    $m = $n;
    while ($n) {
        $r = $n % 10;
        if ($r > 0) 
            if (($m % $r) != 0)
                return false;     
        $n /= 10;
    }
  
    return true;
}
  
// function to calculate the
// number of numbers
function countIn($l, $r)
{
    $ans = 0;
    for ($i = $l; $i <= $r; $i++) 
        if (check($i))
            $ans += 1; 
              
    return $ans;
  
}
  
// Driver function
$l = 10; $r = 20;
echo countIn($l, $r);
  
// This code is contributed ajit
?>

chevron_right



Output:

5


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.