Skip to content
Related Articles

Related Articles

Improve Article

Count numbers present in partitions of N

  • Last Updated : 17 Mar, 2021

Given an integer N, the task is to count the numbers in ordered integer partitions of N.
Examples: 

Input: N = 3 
Output:
Integer partitions of N(=3) are {{1 + 1 + 1}, {1 + 2}, {2 + 1}, {3}}. 
Numbers in integer partition of N are:{1, 1, 1, 1, 2, 2, 1, 3} 
Therefore, the count of numbers in integer partitions of N(=3) is 8.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: N = 4 
Output: 20 



Approach: The problem can be solved based on the following observations:

Count of ways to partition N into exactly k partitions = 

\binom{n-1}{k-1}
 

Therefore, the count of numbers in ordered integer partitions of N is

 

    \begin{align*} = \sum_{k=1}^nk\binom{n-1}{k-1}&=\sum_{k=0}^{n-1}(k+1)\binom{n-1}k\\ &=(n-1)\sum_{k=0}^{n-1}\binom{n-2}{k-1}+\sum_{k=0}^{n-1}\binom{n-1}k\\ &=(n-1)2^{n-2}+2^{n-1}\\ &=(n+1)2^{n-2}\, . \end{align*}

 

Below is the implementation of the above approach:

 

C++




// C++ program to implement
// the above approach 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count of numbers in
// ordered partitions of N
int CtOfNums(int N)
{
  
    // Stores count the numbers in
    // ordered integer partitions
    int res = (N + 1) * (1 << (N - 2));
  
    return round(res);
}
  
// Driver Code
int main()
{
    int N = 3;
     
    cout << CtOfNums(N);
}
 
// This code is contributed by code_hunt

Java




// Java program to implement
// the above approach 
import java.io.*;
 
class GFG{
  
// Function to count of numbers in
// ordered partitions of N
static int CtOfNums(int N)
{
  
    // Stores count the numbers in
    // ordered integer partitions
    int res = (N + 1) * (1 << (N - 2));
  
    return Math.round(res);
}
  
// Driver Code
public static void main (String[] args)
{
    int N = 3;
  
    System.out.print(CtOfNums(N));
}
}
 
// This code is contributed by code_hunt

Python3




# Python3 program to implement
# the above approach
 
# Function to count of numbers in
# ordered partitions of N
def CtOfNums(N):
 
    # Stores count the numbers in
    # ordered integer partitions
    res = (N + 1) * (1<<(N - 2))
 
    return round(res)
 
# Driver code
if __name__ == '__main__':
    N = 3
    print(CtOfNums(N))

C#




// C# program to implement
// the above approach 
using System;
 
class GFG{
  
// Function to count of numbers in
// ordered partitions of N
static int CtOfNums(int N)
{
  
    // Stores count the numbers in
    // ordered integer partitions
    double res = (N + 1) * (1 << (N - 2));
  
    return (int)Math.Round(res);
}
  
// Driver Code
public static void Main ()
{
    int N = 3;
  
    Console.Write(CtOfNums(N));
}
}
 
// This code is contributed by code_hunt

Javascript




<script>
 
// Javascript program to implement
// the above approach 
 
// Function to count of numbers in
// ordered partitions of N
function CtOfNums(N)
{
  
    // Stores count the numbers in
    // ordered integer partitions
    var res = (N + 1) * (1 << (N - 2));
  
    return Math.round(res);
}
  
// Driver Code
var N = 3;
document.write(CtOfNums(N));
 
</script>
Output: 
8

 

Time Complexity: O(log2N) 
Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :