Open In App
Related Articles

Count numbers in range 1 to N which are divisible by X but not by Y

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two positive integers X and Y, the task is to count the total numbers in range 1 to N which are divisible by X but not Y.

Examples:

Input: x = 2, Y = 3, N = 10 Output: 4 Numbers divisible by 2 but not 3 are : 2, 4, 8, 10 Input : X = 2, Y = 4, N = 20 Output : 5 Numbers divisible by 2 but not 4 are : 2, 6, 10, 14, 18

A

Simple Solution

is to count numbers divisible by X but not Y is to loop through 1 to N and counting such number which is divisible by X but not Y.

Approach

  1. For every number in range 1 to N, Increment count if the number is divisible by X but not by Y.
  2. Print the count.
    1. Below is the implementation of above approach:
    2. C++




      // C++ implementation of above approach
      #include <bits/stdc++.h>
      using namespace std;
       
      // Function to count total numbers divisible by
      // x but not y in range 1 to N
      int countNumbers(int X, int Y, int N)
      {
          int count = 0;
          for (int i = 1; i <= N; i++) {
              // Check if Number is divisible
              // by x but not Y
              // if yes, Increment count
              if ((i % X == 0) && (i % Y != 0))
                  count++;
          }
          return count;
      }
       
      // Driver Code
      int main()
      {
       
          int X = 2, Y = 3, N = 10;
          cout << countNumbers(X, Y, N);
          return 0;
      }

      
      

      Java




      // Java implementation of above approach
       
      class GFG {
       
          // Function to count total numbers divisible by
          // x but not y in range 1 to N
          static int countNumbers(int X, int Y, int N)
          {
              int count = 0;
              for (int i = 1; i <= N; i++) {
                  // Check if Number is divisible
                  // by x but not Y
                  // if yes, Increment count
                  if ((i % X == 0) && (i % Y != 0))
                      count++;
              }
              return count;
          }
       
          // Driver Code
          public static void main(String[] args)
          {
       
              int X = 2, Y = 3, N = 10;
              System.out.println(countNumbers(X, Y, N));
          }
      }

      
      

      Python3




      # Python3 implementation of above approach
       
      # Function to count total numbers divisible
      # by x but not y in range 1 to N
      def countNumbers(X, Y, N):
       
          count = 0;
          for i in range(1, N + 1):
               
              # Check if Number is divisible
              # by x but not Y
              # if yes, Increment count
              if ((i % X == 0) and (i % Y != 0)):
                  count += 1;
       
          return count;
       
      # Driver Code
      X = 2;
      Y = 3;
      N = 10;
      print(countNumbers(X, Y, N));
           
      # This code is contributed by mits

      
      

      C#




      // C# implementation of the above approach
      using System;
      class GFG {
       
          // Function to count total numbers divisible by
          // x but not y in range 1 to N
          static int countNumbers(int X, int Y, int N)
          {
              int count = 0;
              for (int i = 1; i <= N; i++) {
                  // Check if Number is divisible
                  // by x but not Y
                  // if yes, Increment count
                  if ((i % X == 0) && (i % Y != 0))
                      count++;
              }
              return count;
          }
       
          // Driver Code
          public static void Main()
          {
       
              int X = 2, Y = 3, N = 10;
              Console.WriteLine(countNumbers(X, Y, N));
          }
      }

      
      

      Javascript




      // Function to count total numbers divisible by
      // x but not y in the range 1 to N
      function countNumbers(X, Y, N) {
          let count = 0;
          for (let i = 1; i <= N; i++) {
              // Check if the number is divisible by X but not by Y
              if (i % X === 0 && i % Y !== 0) {
                  count++;
              }
          }
          return count;
      }
       
      // Driver code
      function main() {
          const X = 2;
          const Y = 3;
          const N = 10;
       
          // Call the countNumbers function and print the result
          console.log(countNumbers(X, Y, N));
      }
       
      // Call the main function to start the process
      main();

      
      

      PHP




      <?php
      //PHP implementation of above approach
       
      // Function to count total numbers divisible by
      // x but not y in range 1 to N
      function countNumbers($X, $Y, $N)
      {
          $count = 0;
          for ($i = 1; $i <= $N; $i++)
          {
              // Check if Number is divisible
              // by x but not Y
              // if yes, Increment count
              if (($i % $X == 0) && ($i % $Y != 0))
                  $count++;
          }
          return $count;
      }
       
      // Driver Code
      $X = 2;
      $Y = 3;
      $N = 10;
      echo (countNumbers($X, $Y, $N));
           
      // This code is contributed by Arnab Kundu
      ?>

      
      

    3. Output

      4
      
      
      
    4. Time Complexity : O(N)
    5. Efficient solution:
      1. In range 1 to N, find total numbers divisible by X and total numbers divisible by Y.
      2. Also, Find total numbers divisible by either X or Y
      3. Calculate total number divisible by X but not Y as (total number divisible by X or Y) – (total number divisible by Y)
    6. Below is the implementation of above approach:
    7. C++




      // C++ implementation of above approach
      #include <bits/stdc++.h>
      using namespace std;
       
      // Function to count total numbers divisible by
      // x but not y in range 1 to N
      int countNumbers(int X, int Y, int N)
      {
       
          // Count total number divisible by X
          int divisibleByX = N / X;
       
          // Count total number divisible by Y
          int divisibleByY = N / Y;
       
          // Count total number divisible by either X or Y
          int LCM = (X * Y) / __gcd(X, Y);
          int divisibleByLCM = N / LCM;
          int divisibleByXorY = divisibleByX + divisibleByY
                                           - divisibleByLCM;
       
          // Count total numbers divisible by X but not Y
          int divisibleByXnotY = divisibleByXorY
                                             - divisibleByY;
       
          return divisibleByXnotY;
      }
       
      // Driver Code
      int main()
      {
       
          int X = 2, Y = 3, N = 10;
          cout << countNumbers(X, Y, N);
          return 0;
      }

      
      

      Java




      // Java implementation of above approach
       
      class GFG {
       
          // Function to calculate GCD
       
          static int gcd(int a, int b)
          {
              if (b == 0)
                  return a;
              return gcd(b, a % b);
          }
       
          // Function to count total numbers divisible by
          // x but not y in range 1 to N
       
          static int countNumbers(int X, int Y, int N)
          {
       
              // Count total number divisible by X
              int divisibleByX = N / X;
       
              // Count total number divisible by Y
              int divisibleByY = N / Y;
       
              // Count total number divisible by either X or Y
              int LCM = (X * Y) / gcd(X, Y);
              int divisibleByLCM = N / LCM;
              int divisibleByXorY = divisibleByX + divisibleByY
                                    - divisibleByLCM;
       
              // Count total number divisible by X but not Y
              int divisibleByXnotY = divisibleByXorY
                                                - divisibleByY;
       
              return divisibleByXnotY;
          }
       
          // Driver Code
          public static void main(String[] args)
          {
       
              int X = 2, Y = 3, N = 10;
              System.out.println(countNumbers(X, Y, N));
          }
      }

      
      

      Python3




      # Python 3 implementation of above approach
      from math import gcd
       
      # Function to count total numbers divisible
      # by x but not y in range 1 to N
      def countNumbers(X, Y, N):
           
          # Count total number divisible by X
          divisibleByX = int(N / X)
       
          # Count total number divisible by Y
          divisibleByY = int(N / Y)
       
          # Count total number divisible
          # by either X or Y
          LCM = int((X * Y) / gcd(X, Y))
          divisibleByLCM = int(N / LCM)
          divisibleByXorY = (divisibleByX +
                             divisibleByY -
                             divisibleByLCM)
       
          # Count total numbers divisible by
          # X but not Y
          divisibleByXnotY = (divisibleByXorY -
                              divisibleByY)
       
          return divisibleByXnotY
       
      # Driver Code
      if __name__ == '__main__':
          X = 2
          Y = 3
          N = 10
          print(countNumbers(X, Y, N))
       
      # This code is contributed by
      # Surendra_Gangwar

      
      

      C#




      // C# implementation of above approach
       
      using System;
      class GFG {
       
          // Function to calculate GCD
          static int gcd(int a, int b)
          {
              if (b == 0)
                  return a;
              return gcd(b, a % b);
          }
       
          // Function to count total numbers divisible by
          // x but not y in range 1 to N
          static int countNumbers(int X, int Y, int N)
          {
       
              // Count total number divisible by X
              int divisibleByX = N / X;
       
              // Count total number divisible by Y
              int divisibleByY = N / Y;
       
              // Count total number divisible by either X or Y
              int LCM = (X * Y) / gcd(X, Y);
              int divisibleByLCM = N / LCM;
              int divisibleByXorY = divisibleByX + divisibleByY
                                              - divisibleByLCM;
       
              // Count total number divisible by X but not Y
              int divisibleByXnotY = divisibleByXorY
                                                - divisibleByY;
       
              return divisibleByXnotY;
          }
       
          // Driver Code
          public static void Main()
          {
       
              int X = 2, Y = 3, N = 10;
              Console.WriteLine(countNumbers(X, Y, N));
          }
      }

      
      

      Javascript




      // Function to count total numbers divisible by
      // X but not Y in the range 1 to N
      function countNumbers(X, Y, N) {
          // Count total numbers divisible by X
          const divisibleByX = Math.floor(N / X);
       
          // Count total numbers divisible by Y
          const divisibleByY = Math.floor(N / Y);
       
          // Calculate the least common multiple (LCM) of X and Y
          const LCM = (X * Y) / gcd(X, Y);
       
          // Count total numbers divisible by either X or Y
          const divisibleByLCM = Math.floor(N / LCM);
       
          // Count total numbers divisible by either X or Y
          const divisibleByXorY = divisibleByX + divisibleByY - divisibleByLCM;
       
          // Count total numbers divisible by X but not by Y
          const divisibleByXnotY = divisibleByXorY - divisibleByY;
       
          return divisibleByXnotY;
      }
       
      // Function to calculate the greatest common divisor (GCD) using Euclidean algorithm
      function gcd(a, b) {
          if (b === 0) {
              return a;
          }
          return gcd(b, a % b);
      }
       
      // Driver code
      function main() {
          const X = 2;
          const Y = 3;
          const N = 10;
       
          // Call the countNumbers function and print the result
          console.log("Count of numbers divisible by " + X + " but not by " + Y + " in the range 1 to " + N + ": " + countNumbers(X, Y, N));
      }
       
      // Call the main function to start the process
      main();

      
      

      PHP




      <?php
      // PHP implementation of above approach
       
      function __gcd($a, $b)
      {
       
          // Everything divides 0
          if ($a == 0)
              return $b;
          if ($b == 0)
              return $a;
       
          // base case
          if($a == $b)
              return $a ;
           
          // a is greater
          if($a > $b)
              return __gcd( $a - $b , $b );
       
          return __gcd( $a , $b - $a );
      }
       
      // Function to count total numbers divisible
      // by x but not y in range 1 to N
      function countNumbers($X, $Y, $N)
      {
       
          // Count total number divisible by X
          $divisibleByX = $N / $X;
       
          // Count total number divisible by Y
          $divisibleByY = $N /$Y;
       
          // Count total number divisible by either X or Y
          $LCM = ($X * $Y) / __gcd($X, $Y);
          $divisibleByLCM = $N / $LCM;
          $divisibleByXorY = $divisibleByX + $divisibleByY -
                                             $divisibleByLCM;
       
          // Count total numbers divisible by X but not Y
          $divisibleByXnotY = $divisibleByXorY -
                              $divisibleByY;
       
          return ceil($divisibleByXnotY);
      }
       
      // Driver Code
      $X = 2;
      $Y = 3;
      $N = 10;
      echo countNumbers($X, $Y, $N);
       
      // This is code contrubted by inder_verma
      ?>

      
      

    8. Output

      4
      
      
      
    9. Time Complexity:
    10. O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 16 Oct, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials