# Count numbers in a range that are divisible by all array elements

Given N numbers and two numbers L and R., the task is to print the count of numbers in the range [L, R] which are divisible by all numbers of the array.

Examples:

Input: a[] = {1, 4, 2], L = 1, R = 10
Output : 2
In range [1, 10], the numbers 4 and 8 are divisible all array elements.

Input : a[] = {1, 3, 2], L = 7, R = 11
Output : 0

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A naive approach is to iterate from L to R and count the numbers which are divisible by all of the array elements.

Time Complexity: O((R-L) * N)

An efficient approach is to find the LCM of N numbers and then count the numbers that are divisible by LCM in range L and R. The numbers divisible by LCM till R are R/LCM. So using exclusion principle, the count will be (R/LCM – L-1/LCM).

Below is the implementation of the above approach.

## C++

 `// C++ program to count numbers in a range  ` `// that are divisible by all array elements ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find the lcm of array ` `int` `findLCM(``int` `arr[], ``int` `n) ` `{ ` `    ``int` `lcm = arr; ` ` `  `    ``// Iterate in the array ` `    ``for` `(``int` `i = 1; i < n; i++) { ` ` `  `        ``// Find lcm ` `        ``lcm = (lcm * arr[i]) / __gcd(arr[i], lcm); ` `    ``} ` ` `  `    ``return` `lcm; ` `} ` ` `  `// Function to return the count of numbers ` `int` `countNumbers(``int` `arr[], ``int` `n, ``int` `l, ``int` `r) ` `{ ` ` `  `    ``// Function call to find the ` `    ``// LCM of N numbers ` `    ``int` `lcm = findLCM(arr, n); ` ` `  `    ``// Return the count of numbers ` `    ``int` `count = (r / lcm) - ((l - 1) / lcm); ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, 4, 2 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` `    ``int` `l = 1, r = 10; ` ` `  `    ``cout << countNumbers(arr, n, l, r); ` `    ``return` `0; ` `} `

## Java

 `// Java program to count numbers in a range  ` `// that are divisible by all array elements ` `class` `GFG ` `{ ` `     `  `// Function to calculate gcd ` `static` `int` `__gcd(``int` `a, ``int` `b) ` `{ ` `       `  `    ``// Everything divides 0  ` `    ``if` `(a == ``0` `|| b == ``0``) ` `        ``return` `0``; ` `   `  `    ``// base case ` `    ``if` `(a == b) ` `        ``return` `a; ` `   `  `    ``// a is greater ` `    ``if` `(a > b) ` `        ``return` `__gcd(a - b, b); ` `           `  `    ``return` `__gcd(a, b - a); ` `} ` `     `  `// Function to find the lcm of array ` `static` `int` `findLCM(``int` `arr[], ``int` `n) ` `{ ` `    ``int` `lcm = arr[``0``]; ` ` `  `    ``// Iterate in the array ` `    ``for` `(``int` `i = ``1``; i < n; i++)  ` `    ``{ ` ` `  `        ``// Find lcm ` `        ``lcm = (lcm * arr[i]) / __gcd(arr[i], lcm); ` `    ``} ` ` `  `    ``return` `lcm; ` `} ` ` `  `// Function to return the count of numbers ` `static` `int` `countNumbers(``int` `arr[], ``int` `n,  ` `                        ``int` `l, ``int` `r) ` `{ ` ` `  `    ``// Function call to find the ` `    ``// LCM of N numbers ` `    ``int` `lcm = findLCM(arr, n); ` ` `  `    ``// Return the count of numbers ` `    ``int` `count = (r / lcm) - ((l - ``1``) / lcm); ` ` `  `    ``return` `count; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``int` `arr[] = { ``1``, ``4``, ``2` `}; ` `    ``int` `n = arr.length; ` `    ``int` `l = ``1``, r = ``10``; ` ` `  `    ``System.out.println(countNumbers(arr, n, l, r)); ` `} ` `} ` ` `  `// This code is contributed by Mukul Singh `

## Python3

 `# Python program to count numbers in  ` `# a range that are divisible by all ` `# array elements ` `import` `math ` ` `  `# Function to find the lcm of array ` `def` `findLCM(arr, n): ` ` `  `    ``lcm ``=` `arr[``0``]; ` ` `  `    ``# Iterate in the array ` `    ``for` `i ``in` `range``(``1``, n ``-` `1``):  ` ` `  `        ``# Find lcm ` `        ``lcm ``=` `(lcm ``*` `arr[i]) ``/` `math.gcd(arr[i], lcm); ` ` `  `    ``return` `lcm; ` ` `  `# Function to return the count of numbers ` `def` `countNumbers(arr, n, l, r): ` ` `  `    ``# Function call to find the ` `    ``# LCM of N numbers ` `    ``lcm ``=` `int``(findLCM(arr, n)); ` `     `  `    ``# Return the count of numbers ` `    ``count ``=` `(r ``/` `lcm) ``-` `((l ``-` `1``) ``/` `lcm); ` `    ``print``(``int``(count)); ` ` `  `# Driver Code ` `arr ``=` `[``1``, ``4``, ``2``]; ` `n ``=` `len``(arr); ` `l ``=` `1``; ` `r ``=` `10``; ` ` `  `countNumbers(arr, n, l, r); ` ` `  `# This code is contributed  ` `# by Shivi_Aggarwal `

## C#

 `// C# program to count numbers in a range  ` `// that are divisible by all array elements  ` `using` `System; ` ` `  `class` `GFG  ` `{  ` `     `  `// Function to calculate gcd  ` `static` `int` `__gcd(``int` `a, ``int` `b)  ` `{  ` `         `  `    ``// Everything divides 0  ` `    ``if` `(a == 0 || b == 0)  ` `        ``return` `0;  ` `     `  `    ``// base case  ` `    ``if` `(a == b)  ` `        ``return` `a;  ` `     `  `    ``// a is greater  ` `    ``if` `(a > b)  ` `        ``return` `__gcd(a - b, b);  ` `             `  `    ``return` `__gcd(a, b - a);  ` `}  ` `     `  `// Function to find the lcm of array  ` `static` `int` `findLCM(``int` `[]arr, ``int` `n)  ` `{  ` `    ``int` `lcm = arr;  ` ` `  `    ``// Iterate in the array  ` `    ``for` `(``int` `i = 1; i < n; i++)  ` `    ``{  ` ` `  `        ``// Find lcm  ` `        ``lcm = (lcm * arr[i]) / __gcd(arr[i], lcm);  ` `    ``}  ` ` `  `    ``return` `lcm;  ` `}  ` ` `  `// Function to return the count of numbers  ` `static` `int` `countNumbers(``int` `[]arr, ``int` `n,  ` `                        ``int` `l, ``int` `r)  ` `{  ` ` `  `    ``// Function call to find the  ` `    ``// LCM of N numbers  ` `    ``int` `lcm = findLCM(arr, n);  ` ` `  `    ``// Return the count of numbers  ` `    ``int` `count = (r / lcm) - ((l - 1) / lcm);  ` ` `  `    ``return` `count;  ` `}  ` ` `  `// Driver Code  ` `public` `static` `void` `Main()  ` `{  ` `    ``int` `[]arr = { 1, 4, 2 };  ` `    ``int` `n = arr.Length;  ` `    ``int` `l = 1, r = 10;  ` ` `  `    ``Console.WriteLine(countNumbers(arr, n, l, r));  ` `}  ` `}  ` ` `  `// This code is contributed by Ryuga  `

## PHP

 ` ``\$b``) ` `        ``return` `__gcd(``\$a` `- ``\$b``, ``\$b``); ` `         `  `    ``return` `__gcd(``\$a``, ``\$b` `- ``\$a``); ` `} ` `     `  `// Function to find the lcm of array ` `function` `findLCM(``\$arr``, ``\$n``) ` `{ ` `    ``\$lcm` `= ``\$arr``; ` ` `  `    ``// Iterate in the array ` `    ``for` `(``\$i` `= 1; ``\$i` `< ``\$n``; ``\$i``++)  ` `    ``{ ` ` `  `        ``// Find lcm ` `        ``\$lcm` `= (``\$lcm` `* ``\$arr``[``\$i``]) /  ` `                 ``__gcd(``\$arr``[``\$i``], ``\$lcm``); ` `    ``} ` ` `  `    ``return` `\$lcm``; ` `} ` ` `  `// Function to return the count of numbers ` `function` `countNumbers(``\$arr``, ``\$n``, ``\$l``, ``\$r``) ` `{ ` ` `  `    ``// Function call to find the ` `    ``// LCM of N numbers ` `    ``\$lcm` `= findLCM(``\$arr``, ``\$n``); ` ` `  `    ``// Return the count of numbers ` `    ``\$count` `= (int)(``\$r` `/ ``\$lcm``) - ` `             ``(int)((``\$l` `- 1) / ``\$lcm``); ` ` `  `    ``return` `\$count``; ` `} ` ` `  `// Driver Code ` `\$arr` `= ``array``(1, 4, 2); ` `\$n` `= sizeof(``\$arr``); ` `\$l` `= 1; ``\$r` `= 10; ` `echo` `countNumbers(``\$arr``, ``\$n``, ``\$l``, ``\$r``); ` ` `  `// This code is contributed ` `// by Akanksha Rai ` `?> `

Output:

```2
``` My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.