Given a 2D array Q[][] of size N * 2 representing queries of the form {L, R}. For each query, the task is to print the count of numbers in the range [L, R] with a count of prime factors equal to a prime number.
Examples:
Input: Q[][] = {{4, 8}, {30, 32}}
Output: 3 2
Explanation:
Query 1:
Prime factors of 4 = {2, 2} and count of prime factors = 2
Prime factors of 5 = {5} and count of prime factors = 1
Prime factors of 6 = {2, 3} and count of prime factors = 2
Prime factors of 7 = {7} and count of prime factors = 1
Prime factors of 8 = {2, 2, 2} and count of prime factors = 3
Therefore, the total count of numbers in the range [4, 8] having count of prime factors is a prime number is 3.
Query 2:
Prime factors of 30 = {2, 3, 5} and count of prime factors = 3
Prime factors of 31 = {31} and count of prime factors = 1
Prime factors of 32 = {2, 2, 2, 2, 2} and count of prime factors = 5
Therefore, the total count of numbers in the range [4, 8] having count of prime factors is a prime number is 2.
Input: Q[][] = {{7, 12}, {10, 99}}
Output: 4
Naive Approach: The simplest approach to solve this problem is to traverse all the numbers in the range [L, R], and for each number, check if the count of prime factors of the number is a prime number or not. If found to be true, increment the counter by 1. After traversing, print the value of counter for each query.
Time Complexity: O(|Q| * (max(arr[i][1] – arr[i][0] + 1)) * sqrt(max(arr[i][1]))
Auxiliary space: O (1)
Efficient Approach: To optimize the above approach the idea is to precompute the smallest prime factor of each number in the range [Li, Ri] using Sieve of Eratosthenes. Follow the steps below to solve the problem:
- Generate and store the smallest prime factor of each element using Sieve of Eratosthenes.
- Find the count of prime factors for each number in the range [Li, Ri] using the Sieve.
- For each number, check if the total count of prime factors is a prime number or not. If found to be true then increment the counter.
- Create a prefix sum array, say sum[], where sum[i] will store the sum of elements from the range [0, i] whose count of prime factors is a prime number.
- Finally, for each query, print the value sum[arr[i][1]] – sum[arr[i][0] – 1].
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
#define MAX 1001
vector< int > sieve()
{
vector< int > spf(MAX);
spf[0] = spf[1] = -1;
for ( int i = 2; i < MAX; i++) {
spf[i] = i;
}
for ( int i = 4; i < MAX; i = i + 2) {
spf[i] = 2;
}
for ( int i = 3; i * i < MAX; i++) {
if (spf[i] == i) {
for ( int j = i * i; j < MAX;
j = j + i) {
if (spf[j] == j) {
spf[j] = i;
}
}
}
}
return spf;
}
int countFactors(vector< int >& spf, int num)
{
int count = 0;
while (num > 1) {
count++;
num = num / spf[num];
}
return count;
}
vector< int > precalculateSum(vector< int >& spf)
{
vector< int > sum(MAX);
sum[0] = 0;
for ( int i = 1; i < MAX; i++) {
int prime_factor
= countFactors(spf, i);
if (spf[prime_factor] == prime_factor) {
sum[i] = sum[i - 1] + 1;
}
else {
sum[i] = sum[i - 1];
}
}
return sum;
}
int main()
{
vector< int > spf = sieve();
vector< int > sum = precalculateSum(spf);
int Q[][2] = { { 4, 8 }, { 30, 32 } };
for ( int i = 0; i < 2; i++) {
cout << (sum[Q[i][1]] - sum[Q[i][0] - 1])
<< " " ;
}
return 0;
}
|
Java
import java.util.*;
class GFG{
public static int MAX = 1001 ;
public static int [] sieve()
{
int spf[] = new int [MAX];
spf[ 0 ] = spf[ 1 ] = - 1 ;
for ( int i = 2 ; i < MAX; i++)
{
spf[i] = i;
}
for ( int i = 4 ; i < MAX; i = i + 2 )
{
spf[i] = 2 ;
}
for ( int i = 3 ; i * i < MAX; i++)
{
if (spf[i] == i)
{
for ( int j = i * i; j < MAX; j = j + i)
{
if (spf[j] == j)
{
spf[j] = i;
}
}
}
}
return spf;
}
public static int countFactors( int spf[], int num)
{
int count = 0 ;
while (num > 1 )
{
count++;
num = num / spf[num];
}
return count;
}
public static int [] precalculateSum( int spf[])
{
int sum[] = new int [MAX];
sum[ 0 ] = 0 ;
for ( int i = 1 ; i < MAX; i++)
{
int prime_factor = countFactors(spf, i);
if (spf[prime_factor] == prime_factor)
{
sum[i] = sum[i - 1 ] + 1 ;
}
else
{
sum[i] = sum[i - 1 ];
}
}
return sum;
}
public static void main(String[] args)
{
int spf[] = sieve();
int sum[] = precalculateSum(spf);
int Q[][] = { { 4 , 8 }, { 30 , 32 } };
for ( int i = 0 ; i < 2 ; i++)
{
System.out.print((sum[Q[i][ 1 ]] -
sum[Q[i][ 0 ] - 1 ]) + " " );
}
}
}
|
Python3
MAX = 1001
def sieve():
global MAX
spf = [ 0 ] * MAX
spf[ 0 ] = spf[ 1 ] = - 1
for i in range ( 2 , MAX ):
spf[i] = i
for i in range ( 4 , MAX , 2 ):
spf[i] = 2
for i in range ( 3 , MAX ):
if (spf[i] = = i):
for j in range (i * i, MAX ):
if (spf[j] = = j):
spf[j] = i
return spf
def countFactors(spf, num):
count = 0
while (num > 1 ):
count + = 1
num = num / / spf[num]
return count
def precalculateSum(spf):
sum = [ 0 ] * MAX
for i in range ( 1 , MAX ):
prime_factor = countFactors(spf, i)
if (spf[prime_factor] = = prime_factor):
sum [i] = sum [i - 1 ] + 1
else :
sum [i] = sum [i - 1 ]
return sum
if __name__ = = '__main__' :
spf = sieve()
sum = precalculateSum(spf)
Q = [ [ 4 , 8 ], [ 30 , 32 ] ]
sum [Q[ 0 ][ 1 ]] + = 1
for i in range ( 0 , 2 ):
print (( sum [Q[i][ 1 ]] -
sum [Q[i][ 0 ]]), end = " " )
|
C#
using System;
class GFG{
public static int MAX = 1001;
public static int [] sieve()
{
int []spf = new int [MAX];
spf[0] = spf[1] = -1;
for ( int i = 2; i < MAX; i++)
{
spf[i] = i;
}
for ( int i = 4; i < MAX; i = i + 2)
{
spf[i] = 2;
}
for ( int i = 3; i * i < MAX; i++)
{
if (spf[i] == i)
{
for ( int j = i * i;
j < MAX; j = j + i)
{
if (spf[j] == j)
{
spf[j] = i;
}
}
}
}
return spf;
}
public static int countFactors( int []spf,
int num)
{
int count = 0;
while (num > 1)
{
count++;
num = num / spf[num];
}
return count;
}
public static int [] precalculateSum( int []spf)
{
int []sum = new int [MAX];
sum[0] = 0;
for ( int i = 1; i < MAX; i++)
{
int prime_factor = countFactors(spf, i);
if (spf[prime_factor] == prime_factor)
{
sum[i] = sum[i - 1] + 1;
}
else
{
sum[i] = sum[i - 1];
}
}
return sum;
}
public static void Main(String[] args)
{
int []spf = sieve();
int []sum = precalculateSum(spf);
int [,]Q = {{4, 8}, {30, 32}};
for ( int i = 0; i < 2; i++)
{
Console.Write((sum[Q[i, 1]] -
sum[Q[i, 0] - 1]) +
" " );
}
}
}
|
Javascript
<script>
let MAX = 1001
function sieve()
{
let spf = new Array(MAX);
spf[0] = spf[1] = -1;
for (let i = 2; i < MAX; i++) {
spf[i] = i;
}
for (let i = 4; i < MAX; i = i + 2) {
spf[i] = 2;
}
for (let i = 3; i * i < MAX; i++) {
if (spf[i] == i) {
for (let j = i * i; j < MAX;
j = j + i) {
if (spf[j] == j) {
spf[j] = i;
}
}
}
}
return spf;
}
function countFactors(spf, num)
{
let count = 0;
while (num > 1) {
count++;
num = num / spf[num];
}
return count;
}
function precalculateSum(spf)
{
let sum = new Array(MAX);
sum[0] = 0;
for (let i = 1; i < MAX; i++) {
let prime_factor
= countFactors(spf, i);
if (spf[prime_factor] == prime_factor) {
sum[i] = sum[i - 1] + 1;
}
else {
sum[i] = sum[i - 1];
}
}
return sum;
}
let spf = sieve();
let sum = precalculateSum(spf);
let Q = [ [ 4, 8 ], [ 30, 32 ] ];
for (let i = 0; i < 2; i++) {
document.write((sum[Q[i][1]] - sum[Q[i][0] - 1]) +
" " );
}
</script>
|
Time Complexity: O(|Q| + (MAX *log(log(MAX))))
Auxiliary Space: O(MAX)