Given an integer n, the task is to count the total lucky numbers smaller than or equal to n. A number is said to be lucky if it has all contagious number of 1’s in binary representation from the beginning. For example 1, 3, 7, 15 are lucky numbers, and 2, 5 and 9 are not lucky numbers.
Examples:
Input :n = 7
Output :3
1, 3 and 7 are lucky numbers
Input :n = 17
Output :4
Approach:one approach is that first we find out the binary representation of each number and than check for contagious number of 1’s for each number, but this approach is time consuming and can give tle if the constraints are two large, Efficient approach can be find out by observing the numbers, we can say that every ith lucky number can be found by the formula 2i-1, and by iterating a loop upto number less than equal to n we can find out the total lucky numbers.
Below is the implementation of above approach
CPP
#include <bits/stdc++.h>
using namespace std;
int countLuckyNum( int n)
{
int count = 0, i = 1;
while (1) {
if (n >= ((1 << i) - 1))
count++;
else
break ;
i++;
}
return count;
}
int main()
{
int n = 7;
cout << countLuckyNum(n);
return 0;
}
|
Java
import java.util.*;
import java.lang.*;
import java.io.*;
public class GFG {
static int countLuckyNum( int n)
{
int count = 0 , i = 1 ;
while ( true ) {
if (n >= (( 1 << i) - 1 ))
count++;
else
break ;
i++;
}
return count;
}
public static void main(String[] args)
{
int n = 7 ;
System.out.println(countLuckyNum(n));
}
}
|
Python
def countLuckyNum(n):
count, i = 0 , 1
while True :
if n> = 2 * * i - 1 :
count + = 1
else :
break
i + = 1 ;
return count
n = 7
print (countLuckyNum(n))
|
C#
using System;
public class GFG {
static int countLuckyNum( int n)
{
int count = 0, i = 1;
while ( true ) {
if (n >= ((1 << i) - 1))
count++;
else
break ;
i++;
}
return count;
}
public static void Main()
{
int n = 7;
Console.WriteLine(countLuckyNum(n));
}
}
|
PHP
<?php
function countLuckyNum( $n )
{
$count = 0;
$i = 1;
while (1)
{
if ( $n >= ((1 << $i ) - 1))
$count += 1;
else
break ;
$i += 1;
}
return $count ;
}
$n = 7;
echo countLuckyNum( $n ) ;
?>
|
Javascript
<script>
function countLuckyNum(n) {
var count = 0, i = 1;
while ( true ) {
if (n >= ((1 << i) - 1))
count++;
else
break ;
i++;
}
return count;
}
var n = 7;
document.write(countLuckyNum(n));
</script>
|
output:3
Time Complexity: O(logn)
Auxiliary Space: O(1)
Please Login to comment...