Count numbers have all 1s together in binary representation

Given an integer n, the task is to count the total lucky numbers smaller than or equal to n. A number is said to be lucky if it has all contagious number of 1’s in binary representation from the beginning. For example 1, 3, 7, 15 are lucky numbers, and 2, 5 and 9 are not lucky numbers.

Examples:

Input :n = 7 
Output :3
1, 3 and 7 are lucky numbers

Input :n = 17
Output :4

Approach:one approach is that first we find out the binary representation of each number and than check for contagious number of 1’s for each number, but this approach is time consuming and can give tle if the constraints are two large, Efficient approach can be find out by observing the numbers, we can say that every ith lucky number can be found by the formula 2i-1, and by iterating a loop upto number less than equal to n we can find out the total lucky numbers.

Below is the implementation of above approach

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <bits/stdc++.h>
using namespace std;
  
int countLuckyNum(int n)
{
    int count = 0, i = 1;
  
    while (1) {
        if (n >= ((1 << i) - 1))
            count++;
        else
            break;
        i++;
    }
  
    return count;
}
  
// Driver code
int main()
{
    int n = 7;
    cout << countLuckyNum(n);
    return 0;
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# python3 code of above problem
  
# function to count the lucky number
  
def countLuckyNum(n):
      
    count, i = 0, 1
      
    while True:
        if n>= 2**i-1:
            count+= 1
        else:
            break
        i+= 1;
    return count     
  
# driver code
n = 7
  
print(countLuckyNum(n))

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

import java.util.*;
import java.lang.*;
import java.io.*;
  
public class GFG {
  
    // Function to return the count of lucky number
    static int countLuckyNum(int n)
    {
  
        int count = 0, i = 1;
        while (true) {
            if (n >= ((1 << i) - 1))
                count++;
            else
                break;
            i++;
        }
        return count;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int n = 7;
        System.out.println(countLuckyNum(n));
    }
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach 
    
// Function to count the lucky number
function countLuckyNum($n)   
{   
    
  $count = 0;
  $i = 1;
    
  while(1)
  {
      if ($n >= ((1 << $i) - 1))
        $count += 1;
      else
        break;
      $i += 1; 
  }
  return $count;                     
}   
      
// Driver code   
$n = 7; 
echo countLuckyNum($n) ;   
?>

chevron_right


csharp

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
public class GFG {
  
    // Function to return the count of lucky number
    static int countLuckyNum(int n)
    {
  
        int count = 0, i = 1;
        while (true) {
            if (n >= ((1 << i) - 1))
                count++;
            else
                break;
            i++;
        }
        return count;
    }
  
    // Driver code
    public static void Main()
    {
        int n = 7;
        Console.WriteLine(countLuckyNum(n));
    }
}

chevron_right


output:3


My Personal Notes arrow_drop_up

Data science |Machine learning|Programming

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.




Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.