Skip to content
Related Articles

Related Articles

Improve Article

Count number of triplets with product equal to given number with duplicates allowed | Set-2

  • Difficulty Level : Hard
  • Last Updated : 15 Oct, 2021

Given an array of positive integers(may contain duplicates) and a number ‘m’, find the number of unordered triplets ((Ai, Aj, Ak) and (Aj, Ai, Ak) and other permutations are counted as one only) with product equal to ‘m’. 

Examples: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = { 1, 4, 6, 2, 3, 8}, M = 24 
Output:
The triplets are {1, 4, 6} {1, 3, 8} {4, 2, 3}



Input: arr[] = { 0, 4, 6, 2, 3, 8}, M = 18 
Output:
There are no triplets in this case 

A solution with O(N2) has been discussed in the previous post. In this post a better approach with lesser complexity has been discussed. 

Approach: The below algorithm is followed to solve the above problem.  

  • Use a hash-map to count the frequency of every element in the given array.
  • Declare a set which can store triplets, so that only unordered triplets are taken to count.
  • Iterate from 1 to sqrt(m) in a loop(let variable be i), since the maximum number by which M is divisible is sqrt(M) leaving out M.
  • Check if M is divisible by i or not and i is present in the array of integers or not, if it is, then again loop from 1 to M/i.(let the loop variable be j).
  • Again Check if M is divisible by j or not and j is present in the array of integers or not, if it is then check if the remaining number that is ( (M / i) / j) is present or not.
  • If it is present, then a triplet has been formed. To avoid duplicate triplets, insert them in the set in sorted order.
  • Check if the set the size increases after the insertion of triplet if it does then use combinatorics to find the number of triplets.
  • To find the number of triplets, the following conditions will be there. 
    1. If all of the Ai, Aj and Ak are unique, then number of combinations will be the product of their frequencies.
    2. If all of them are same, then we can only choose three of them, hence the formula stands at frequency \choose 3          .
    3. If any of the two are same(let Ai and Aj), the count will be frequency[Ai] \choose 2          * frequency[Ak]

Below is the implementation of the above approach.  

C++




// C++ program to find the
// number of triplets in array
// whose product is equal to M
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the triplets
int countTriplets(int a[], int m, int n)
{
 
    // hash-map to store the frequency of every number
    unordered_map<int, int> frequency;
 
    // set to store the unique triplets
    set<pair<int, pair<int, int> > > st;
 
    // count the number of times
    // every element appears in a map
    for (int i = 0; i < n; i++) {
        frequency[a[i]] += 1;
    }
 
    // stores the answer
    int ans = 0;
 
    // iterate till sqrt(m) since tnum2t is the
    // maximum number tnum2t can divide M except itself
    for (int i = 1; i * i <= m; i++) {
 
        // if divisible and present
        if (m % i == 0 and frequency[i]) {
 
            // remaining number after division
            int num1 = m / i;
 
            // iterate for the second number of the triplet
            for (int j = 1; j * j <= num1; j++) {
 
                // if divisible and present
                if (num1 % j == 0 and frequency[j]) {
 
                    // remaining number after division
                    int num2 = num1 / j;
 
                    // if the third number is present in array
                    if (frequency[num2]) {
 
                        // a temp array to store the triplet
                        int temp[] = { num2, i, j };
 
                        // sort the triplets
                        sort(temp, temp + 3);
 
                        // get the size of set
                        int setsize = st.size();
 
                        // insert the triplet in ascending order
                        st.insert({ temp[0], { temp[1], temp[2] } });
 
                        // if the set size increases after insertion,
                        //  it means a new triplet is found
                        if (setsize != st.size()) {
 
                            // if all the number in triplets are unique
                            if (i != j and j != num2)
                                ans += frequency[i] * frequency[j] * frequency[num2];
 
                            // if Ai and Aj are same among triplets
                            else if (i == j && j != num2)
                                ans += (frequency[i] * (frequency[i] - 1) / 2)
                                       * frequency[num2];
 
                            // if Aj and Ak are same among triplets
                            else if (j == num2 && j != i)
                                ans += (frequency[j] * (frequency[j] - 1) / 2)
                                       * frequency[i];
 
                            // if three of them are
                            // same among triplets
                            else if (i == j and j == num2)
                                ans += (frequency[i] * (frequency[i] - 1) * (frequency[i] - 2) / 6);
 
                            // if Ai and Ak are same among triplets
                            else
                                ans += (frequency[i] * (frequency[i] - 1) / 2)
                                       * frequency[j];
                        }
                    }
                }
            }
        }
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    int a[] = { 1, 4, 6, 2, 3, 8 };
    int m = 24;
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << countTriplets(a, m, n);
 
    return 0;
}

Java




// Java program to find the
// number of triplets in array
// whose product is equal to M
import java.util.*;
 
class GFG
{
 
 
// Function to count the triplets
static int countTriplets(int a[], int m, int n)
{
 
    // hash-map to store
    // the frequency of every number
    HashMap<Integer, Integer> frequency
            = new HashMap<>();
 
    // put to store the unique triplets
    Set<String> st = new HashSet<String>();
 
    // count the number of times
    // every elememt appears in a map
    for (int i = 0; i < n; i++)
    {
        frequency.put(a[i],(frequency.get(a[i]) ==
                null ? 1:(frequency.get(a[i]) + 1)));
    }
 
    // stores the answer
    int ans = 0;
 
    // iterate till sqrt(m) since tnum2t is the
    // maximum number tnum2t can divide M except itself
    for (int i = 1; i * i <= m; i++)
    {
 
        // if divisible && present
        if (m % i == 0 && frequency.get(i)!=null)
        {
 
            // remaining number after division
            int num1 = m / i;
 
            // iterate for the second number of the triplet
            for (int j = 1; j * j <= num1; j++)
            {
 
                // if divisible && present
                if (num1 % j == 0 && frequency.get(j) != null)
                {
 
                    // remaining number after division
                    int num2 = num1 / j;
 
                    // if the third number is present in array
                    if (frequency.get(num2) != null)
                    {
 
                        // a temp array to store the triplet
                        int temp[] = { num2, i, j };
 
                        // sort the triplets
                        Arrays.sort(temp);
 
                        // get the size of put
                        int setsize = st.size();
 
                        // add the triplet in ascending order
                        st.add(temp[0]+" "+ temp[1]+" " +temp[2] );
 
                        // if the put size increases after addition,
                        // it means a new triplet is found
                        if (setsize != st.size())
                        {
 
                            // if all the number in triplets are unique
                            if (i != j && j != num2)
                                ans += frequency.get(i) *
                                        frequency.get(j) *
                                        frequency.get(num2);
 
                            // if Ai && Aj are same among triplets
                            else if (i == j && j != num2)
                                ans += (frequency.get(i) *
                                        (frequency.get(i) - 1) / 2)
                                        * frequency.get(num2);
 
                            // if Aj && Ak are same among triplets
                            else if (j == num2 && j != i)
                                ans += (frequency.get(j) *
                                        (frequency.get(j) - 1) / 2)
                                        * frequency.get(i);
 
                            // if three of them are
                            // same among triplets
                            else if (i == j && j == num2)
                                ans += (frequency.get(i) *
                                        (frequency.get(i) - 1) *
                                        (frequency.get(i) - 2) / 6);
 
                            // if Ai && Ak are same among triplets
                            else
                                ans += (frequency.get(i) *
                                        (frequency.get(i) - 1) / 2)
                                        * frequency.get(j);
                        }
                    }
                }
            }
        }
    }
    return ans;
}
 
// Driver Code
public static void main(String args[])
{
    int a[] = { 1, 4, 6, 2, 3, 8 };
    int m = 24;
    int n = a.length;
 
    System.out.println(countTriplets(a, m, n));
}
}
 
// This code is contributed by Arnab Kundu

Python3




# Python3 program to find the
# number of triplets in array
# whose product is equal to M
import math
 
# Function to count the triplets
def countTriplets(a, m, n):
   
    # hash-map to store
    # the frequency of every number
    frequency = {}
    
    # put to store the unique triplets
    st = set({})
    
    # count the number of times
    # every elememt appears in a map
    for i in range(n):
        if a[i] in frequency:
            frequency[a[i]] += 1
        else:
            frequency[a[i]] = 1
    
    # stores the answer
    ans = 0
    
    # iterate till sqrt(m) since tnum2t is the
    # maximum number tnum2t can divide M except itself
    i = 1
    while i * i <= m:
       
        # if divisible && present
        if (m % i == 0 and i in frequency):
           
            # remaining number after division
            num1 = int(m / i)
    
            # iterate for the second number of the triplet
            j = 1
            while j * j <= num1:
                # if divisible && present
                if (num1 % j == 0 and j in frequency):
                    # remaining number after division
                    num2 = math.floor(num1 / j)
    
                    # if the third number is present in array
                    if num2 in frequency:
                        # a temp array to store the triplet
                        temp = [ num2, i, j ]
    
                        # sort the triplets
                        temp.sort()
    
                        # get the size of put
                        setsize = len(st)
    
                        # add the triplet in ascending order
                        st.add(str(temp[0])+" "+ str(temp[1])+" " +str(temp[2]))
    
                        # if the put size increases after addition,
                        # it means a new triplet is found
                        if setsize != len(st):
                            # if all the number in
                            # triplets are unique
                            if (i != j and j != num2):
                                ans += frequency[i] * frequency[j] * frequency[num2]
    
                            # if Ai && Aj are same among triplets
                            elif (i == j and j != num2):
                                ans += (frequency[i] * (frequency[i] - 1) / 2) * frequency[num2]
    
                            # if Aj && Ak are same among triplets
                            elif (j == num2 and j != i):
                                ans += (frequency[j] * (frequency[j] - 1) / 2) * frequency[i]
    
                            # if three of them are
                            # same among triplets
                            elif (i == j and j == num2):
                                ans += (frequency[i] * (frequency[i] - 1) * (frequency[i] - 2) / 6)
    
                            # if Ai && Ak are same among triplets
                            else:
                                ans += (frequency[i] * (frequency[i] - 1) / 2) * frequency[j]
                j += 1
        i += 1
    return int(ans)
 
a=[1, 4, 6, 2, 3, 8 ]
m = 24;
n = len(a)
print(countTriplets(a, m, n))
 
# This code is contributed by rameshtravel07.

C#




// C# program to find the
// number of triplets in array
// whose product is equal to M
using System;
using System.Collections.Generic;
class GFG {
     
    // Function to count the triplets
    static int countTriplets(int[] a, int m, int n)
    {
      
        // hash-map to store
        // the frequency of every number
        Dictionary<int, int> frequency = new Dictionary<int, int>();
      
        // put to store the unique triplets
        HashSet<string> st = new HashSet<string>();
      
        // count the number of times
        // every elememt appears in a map
        for (int i = 0; i < n; i++)
        {
            if(frequency.ContainsKey(a[i]))
            {
                frequency[a[i]] += 1;
            }
            else{
                frequency[a[i]] = 1;
            }
        }
      
        // stores the answer
        int ans = 0;
      
        // iterate till sqrt(m) since tnum2t is the
        // maximum number tnum2t can divide M except itself
        for (int i = 1; i * i <= m; i++)
        {
      
            // if divisible && present
            if (m % i == 0 && frequency.ContainsKey(i))
            {
      
                // remaining number after division
                int num1 = m / i;
      
                // iterate for the second number of the triplet
                for (int j = 1; j * j <= num1; j++)
                {
      
                    // if divisible && present
                    if (num1 % j == 0 && frequency.ContainsKey(j))
                    {
      
                        // remaining number after division
                        int num2 = num1 / j;
      
                        // if the third number is present in array
                        if (frequency.ContainsKey(num2))
                        {
      
                            // a temp array to store the triplet
                            int[] temp = { num2, i, j };
      
                            // sort the triplets
                            Array.Sort(temp);
      
                            // get the size of put
                            int setsize = st.Count;
      
                            // add the triplet in ascending order
                            st.Add(temp[0].ToString()+" "+ temp[1].ToString()+" " +temp[2].ToString());
      
                            // if the put size increases after addition,
                            // it means a new triplet is found
                            if (setsize != st.Count)
                            {
      
                                // if all the number in triplets are unique
                                if (i != j && j != num2)
                                    ans += frequency[i] *
                                            frequency[j] *
                                            frequency[num2];
      
                                // if Ai && Aj are same among triplets
                                else if (i == j && j != num2)
                                    ans += (frequency[i] *
                                            (frequency[i] - 1) / 2)
                                            * frequency[num2];
      
                                // if Aj && Ak are same among triplets
                                else if (j == num2 && j != i)
                                    ans += (frequency[j] *
                                            (frequency[j] - 1) / 2)
                                            * frequency[i];
      
                                // if three of them are
                                // same among triplets
                                else if (i == j && j == num2)
                                    ans += (frequency[i] *
                                            (frequency[i] - 1) *
                                            (frequency[i] - 2) / 6);
      
                                // if Ai && Ak are same among triplets
                                else
                                    ans += (frequency[i] *
                                            (frequency[i] - 1) / 2)
                                            * frequency[j];
                            }
                        }
                    }
                }
            }
        }
        return ans;
    }
 
  // Driver code
  static void Main() {
    int[] a = { 1, 4, 6, 2, 3, 8 };
    int m = 24;
    int n = a.Length;
  
    Console.Write(countTriplets(a, m, n));
  }
}
 
// This code is contributed by decode2207.

Javascript




<script>
 
// JavaScript program to find the
// number of triplets in array
// whose product is equal to M
 
// Function to count the triplets
function countTriplets(a,m,n)
{
    // hash-map to store
    // the frequency of every number
    let frequency = new Map();
   
    // put to store the unique triplets
    let st = new Set();
   
    // count the number of times
    // every elememt appears in a map
    for (let i = 0; i < n; i++)
    {
        frequency.set(a[i],(frequency.get(a[i]) ==
                null ? 1:(frequency.get(a[i]) + 1)));
    }
   
    // stores the answer
    let ans = 0;
   
    // iterate till sqrt(m) since tnum2t is the
    // maximum number tnum2t can divide M except itself
    for (let i = 1; i * i <= m; i++)
    {
   
        // if divisible && present
        if (m % i == 0 && frequency.get(i)!=null)
        {
   
            // remaining number after division
            let num1 = m / i;
   
            // iterate for the second number of the triplet
            for (let j = 1; j * j <= num1; j++)
            {
   
                // if divisible && present
                if (num1 % j == 0 && frequency.get(j) != null)
                {
   
                    // remaining number after division
                    let num2 = Math.floor(num1 / j);
   
                    // if the third number is present in array
                    if (frequency.get(num2) != null)
                    {
   
                        // a temp array to store the triplet
                        let temp = [ num2, i, j ];
   
                        // sort the triplets
                        temp.sort(function(a,b){return a-b;});
   
                        // get the size of put
                        let setsize = st.size;
   
                        // add the triplet in ascending order
                        st.add(temp[0]+" "+ temp[1]+" " +temp[2] );
   
                        // if the put size increases after addition,
                        // it means a new triplet is found
                        if (setsize != st.size)
                        {
   
                            // if all the number in
                            // triplets are unique
                            if (i != j && j != num2)
                                ans += frequency.get(i) *
                                        frequency.get(j) *
                                        frequency.get(num2);
   
                            // if Ai && Aj are same among triplets
                            else if (i == j && j != num2)
                                ans += (frequency.get(i) *
                                        (frequency.get(i) - 1) / 2)
                                        * frequency.get(num2);
   
                            // if Aj && Ak are same among triplets
                            else if (j == num2 && j != i)
                                ans += (frequency.get(j) *
                                        (frequency.get(j) - 1) / 2)
                                        * frequency.get(i);
   
                            // if three of them are
                            // same among triplets
                            else if (i == j && j == num2)
                                ans += (frequency.get(i) *
                                        (frequency.get(i) - 1) *
                                        (frequency.get(i) - 2) / 6);
   
                            // if Ai && Ak are same among triplets
                            else
                                ans += (frequency.get(i) *
                                        (frequency.get(i) - 1) / 2)
                                        * frequency.get(j);
                        }
                    }
                }
            }
        }
    }
    return ans;
}
 
// Driver Code
let a=[1, 4, 6, 2, 3, 8 ];
let m = 24;
let n = a.length;
document.write(countTriplets(a, m, n));
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Output: 
3

 

Time Complexity: O(N * log N)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :