Skip to content
Related Articles

Related Articles

Improve Article
Count number of triplets (a, b, c) such that a^2 + b^2 = c^2 and 1 <= a <= b <= c <= n
  • Difficulty Level : Easy
  • Last Updated : 22 Apr, 2021

Given an integer N, the task is to count the number of triplets (a, b, c) such that a2 + b2 = c2 and 1 ≤ a ≤ b ≤ c ≤ N.

Examples: 

Input: N = 5 
Output:
The only possible triplet pair is (3, 4, 5) 
3^2 + 4^2 = 5^2 i.e. 9 + 16 = 25

Input: N = 10 
Output:
(3, 4, 5) and (6, 8, 10) are the required triplet pairs. 
 

Method-1: 
Run two loop one from i = 1 to N and second from j = i+1 to N. Consider each and every pair and find i*i + j*j and check if this is a perfect square and its square root is less than N. If yes then increment the count.



Below is the implementation of the above approach:  

C++




// C++ program to Find number of
// Triplets 1 <= a <= b<= c <= n,
// Such that a^2 + b^2 = c^2
#include <bits/stdc++.h>
using namespace std;
 
// function to ind number of
// Triplets 1 <= a <= b<= c <= n,
// Such that a^2 + b^2 = c^2
int Triplets(int n)
{
    // to store required answer
    int ans = 0;
 
    // run nested loops for first two numbers.
    for (int i = 1; i <= n; ++i) {
        for (int j = i; j <= n; ++j) {
            int x = i * i + j * j;
 
            // third number
            int y = sqrt(x);
 
            // check if third number is perfect
            // square and less than n
            if (y * y == x && y <= n)
                ++ans;
        }
    }
 
    return ans;
}
 
// Driver code
int main()
{
 
    int n = 10;
 
    // function call
    cout << Triplets(n);
 
    return 0;
}

Java




// Java program to Find number of
// Triplets 1 <= a <= b<= c <= n,
// Such that a^2 + b^2 = c^2
class Solution
{
// function to ind number of
// Triplets 1 <= a <= b<= c <= n,
// Such that a^2 + b^2 = c^2
static int Triplets(int n)
{
    // to store required answer
    int ans = 0;
 
    // run nested loops for first two numbers.
    for (int i = 1; i <= n; ++i) {
        for (int j = i; j <= n; ++j) {
            int x = i * i + j * j;
 
            // third number
            int y =(int) Math.sqrt(x);
 
            // check if third number is perfect
            // square and less than n
            if (y * y == x && y <= n)
                ++ans;
        }
    }
 
    return ans;
}
 
// Driver code
public static void main(String args[])
{
 
    int n = 10;
 
    // function call
    System.out.println(Triplets(n));
 
}
}
//contributed by Arnab Kundu

Python3




# Python3 program to Find number of
# Triplets 1 <= a <= b<= c <= n,
# Such that a^2 + b^2 = c^2
import math
 
# function to ind number of
# Triplets 1 <= a <= b<= c <= n,
# Such that a^2 + b^2 = c^2
def Triplets(n):
 
    # to store required answer
    ans = 0
 
    # run nested loops for first two numbers.
    for i in range(1, n + 1):
        for j in range(i, n + 1):
            x = i * i + j * j
 
            # third number
            y = int(math.sqrt(x))
 
            # check if third number is perfect
            # square and less than n
            if (y * y == x and y <= n):
                ans += 1
    return ans
 
# Driver code
if __name__ == "__main__":
    n = 10
 
    # function call
    print(Triplets(n))
 
# This code is contributed
# by ChitraNayal

C#




// C# program to Find number of
// Triplets 1 <= a <= b<= c <= n,
// Such that a^2 + b^2 = c^2
using System;
 
class GFG
{
// function to ind number of
// Triplets 1 <= a <= b<= c <= n,
// Such that a^2 + b^2 = c^2
static int Triplets(int n)
{
    // to store required answer
    int ans = 0;
 
    // run nested loops for first two numbers.
    for (int i = 1; i <= n; ++i)
    {
        for (int j = i; j <= n; ++j)
        {
            int x = i * i + j * j;
 
            // third number
            int y = (int)Math.Sqrt(x);
 
            // check if third number is perfect
            // square and less than n
            if (y * y == x && y <= n)
                ++ans;
        }
    }
 
    return ans;
}
 
// Driver code
static void Main()
{
    int n = 10;
    Console.WriteLine(Triplets(n));
}
}
 
// This code is contributed by ANKITRAI1

PHP




<?php
// PHP program to Find number of
// Triplets 1 <= a <= b<= c <= n,
// Such that a^2 + b^2 = c^2
 
// Function to ind number of
// Triplets 1 <= a <= b<= c <= n,
// Such that a^2 + b^2 = c^2
function Triplets($n)
{
    // to store required answer
    $ans = 0;
 
    // run nested loops for first
    // two numbers.
    for ($i = 1; $i <= $n; ++$i)
    {
        for ($j =$i; $j <= $n; ++$j)
        {
            $x = $i * $i + $j * $j;
 
            // third number
            $y = (int)sqrt($x);
 
            // check if third number is perfect
            // square and less than n
            if ($y * $y == $x && $y <= $n)
                ++$ans;
        }
    }
 
    return $ans;
}
 
// Driver code
$n = 10;
 
// function call
echo Triplets($n);
 
// This code is contributed by mits
?>

Javascript




<script>
// javascript program to Find number of
// Triplets 1 <= a <= b<= c <= n,
// Such that a^2 + b^2 = c^2
 
    // function to ind number of
    // Triplets 1 <= a <= b<= c <= n,
    // Such that a^2 + b^2 = c^2
    function Triplets(n)
    {
     
        // to store required answer
        var ans = 0;
 
        // run nested loops for first two numbers.
        for (let i = 1; i <= n; ++i) {
            for (let j = i; j <= n; ++j) {
                var x = i * i + j * j;
 
                // third number
                var y = parseInt( Math.sqrt(x));
 
                // check if third number is perfect
                // square and less than n
                if (y * y == x && y <= n)
                    ++ans;
            }
        }
        return ans;
    }
 
    // Driver code
    var n = 10;
 
    // function call
    document.write(Triplets(n));
 
// This code is contributed by shikhasingrajput
</script>
Output: 
2

 

Method-2: 

  • Find all the perfect squares upto n2 and save it to an ArrayList.
  • Now for every a from 1 to n, do the following: 
    • Choose c2 from the list of perfect squares calculated earlier.
    • Then b2 can be calculated as b2 = c2 – a2.
    • Now check if a <= b <= c and b2 calculated in the previous step must be a perfect square.
    • If the above conditions are satisfied then increment the count.
  • Print the count in the end.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to return an Array containing
// all the perfect squares upto n
vector<int> getPerfectSquares(int n)
{
    vector<int> perfectSquares;
    int current = 1, i = 1;
 
    // While current perfect square
    // is less than or equal to n
    while (current <= n)
    {
        perfectSquares.push_back(current);
        current = pow(++i, 2);
    }
    return perfectSquares;
}
 
// Function to return the count of
// triplet (a, b, c) pairs such that
// a^2 + b^2 = c^2 and
// 1 <= a <= b <= c <= n
int countTriplets(int n)
{
     
    // Vector of perfect squares upto n^2
    vector<int> perfectSquares = getPerfectSquares(
                                 pow(n, 2));
 
    int count = 0;
    for(int a = 1; a <= n; a++)
    {
        int aSquare = pow(a, 2);
 
        for(int i = 0; i < perfectSquares.size(); i++)
        {
            int cSquare = perfectSquares[i];
 
            // Since, a^2 + b^2 = c^2
            int bSquare = abs(cSquare - aSquare);
            int b = sqrt(bSquare);
            int c = sqrt(cSquare);
 
            // If c < a or bSquare is not a
            // perfect square
            if (c < a || (find(perfectSquares.begin(),
                               perfectSquares.end(),
                               bSquare) ==
                               perfectSquares.end()))
                continue;
 
            // If triplet pair (a, b, c) satisfy
            // the given condition
            if ((b >= a) && (b <= c) &&
                (aSquare + bSquare == cSquare))
                count++;
        }
    }
    return count;
}
 
// Driver code
int main()
{
    int n = 10;
     
    cout << countTriplets(n);
 
    return 0;
}
 
// This code is contributed by himanshu77

Java




// Java implementation of the approach
import java.util.*;
 
public class GFG {
 
    // Function to return an ArrayList containing
    // all the perfect squares upto n
    public static ArrayList<Integer> getPerfectSquares(int n)
    {
        ArrayList<Integer> perfectSquares = new ArrayList<>();
        int current = 1, i = 1;
 
        // while current perfect square is less than or equal to n
        while (current <= n) {
            perfectSquares.add(current);
            current = (int)Math.pow(++i, 2);
        }
        return perfectSquares;
    }
 
    // Function to return the count of triplet (a, b, c) pairs
    // such that a^2 + b^2 = c^2 and 1 <= a <= b <= c <= n
    public static int countTriplets(int n)
    {
        // List of perfect squares upto n^2
        ArrayList<Integer> perfectSquares
            = getPerfectSquares((int)Math.pow(n, 2));
 
        int count = 0;
        for (int a = 1; a <= n; a++) {
            int aSquare = (int)Math.pow(a, 2);
            for (int i = 0; i < perfectSquares.size(); i++) {
                int cSquare = perfectSquares.get(i);
 
                // Since, a^2 + b^2 = c^2
                int bSquare = cSquare - aSquare;
                int b = (int)Math.sqrt(bSquare);
                int c = (int)Math.sqrt(cSquare);
 
                // If c < a or bSquare is not a perfect square
                if (c < a || !perfectSquares.contains(bSquare))
                    continue;
 
                // If triplet pair (a, b, c) satisfy the given condition
                if ((b >= a) && (b <= c) && (aSquare + bSquare == cSquare))
                    count++;
            }
        }
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 10;
 
        System.out.println(countTriplets(n));
    }
}

Python3




# Python3  implementation of the approach
import math
 
# Function to return an ArrayList containing
# all the perfect squares upto n
def getPerfectSquares(n):
 
    perfectSquares = []
    current = 1
    i = 1
 
    # while current perfect square is less than or equal to n
    while (current <= n) :
        perfectSquares.append(current)
        i += 1
        current = i** 2
     
    return perfectSquares
 
# Function to return the count of triplet (a, b, c) pairs
# such that a^2 + b^2 = c^2 and 1 <= a <= b <= c <= n
def countTriplets(n):
 
    # List of perfect squares upto n^2
    perfectSquares= getPerfectSquares(n**2)
 
    count = 0
    for a in range(1, n +1 ):
        aSquare = a**2
        for i in range(len(perfectSquares)):
            cSquare = perfectSquares[i]
 
            # Since, a^2 + b^2 = c^2
            bSquare = abs(cSquare - aSquare)
            b = math.sqrt(bSquare)
            b = int(b)
            c = math.sqrt(cSquare)
            c = int(c)
             
            # If c < a or bSquare is not a perfect square
            if (c < a or (bSquare not in perfectSquares)):
                continue
 
            # If triplet pair (a, b, c) satisfy the given condition
            if ((b >= a) and (b <= c) and (aSquare + bSquare == cSquare)):
                count += 1
                 
    return count
 
# Driver code
if __name__ == "__main__":
 
    n = 10
 
    print(countTriplets(n))
 
# This code is contributed by chitranayal

C#




// C# implementation of the approach
using System.Collections;
using System;
 
class GFG
{
 
// Function to return an ArrayList containing
// all the perfect squares upto n
public static ArrayList getPerfectSquares(int n)
{
    ArrayList perfectSquares = new ArrayList();
    int current = 1, i = 1;
 
    // while current perfect square is less
    // than or equal to n
    while (current <= n)
    {
        perfectSquares.Add(current);
        current = (int)Math.Pow(++i, 2);
    }
    return perfectSquares;
}
 
// Function to return the count of triplet
// (a, b, c) pairs such that a^2 + b^2 = c^2
// and 1 <= a <= b <= c <= n
public static int countTriplets(int n)
{
    // List of perfect squares upto n^2
    ArrayList perfectSquares = getPerfectSquares((int)Math.Pow(n, 2));
 
    int count = 0;
    for (int a = 1; a <= n; a++)
    {
        int aSquare = (int)Math.Pow(a, 2);
        for (int i = 0; i < perfectSquares.Count; i++)
        {
            int cSquare = (int)perfectSquares[i];
 
            // Since, a^2 + b^2 = c^2
            int bSquare = cSquare - aSquare;
            int b = (int)Math.Sqrt(bSquare);
            int c = (int)Math.Sqrt(cSquare);
 
            // If c < a or bSquare is not a perfect square
            if (c < a || !perfectSquares.Contains(bSquare))
                continue;
 
            // If triplet pair (a, b, c) satisfy
            // the given condition
            if ((b >= a) && (b <= c) &&
                (aSquare + bSquare == cSquare))
                count++;
        }
    }
    return count;
}
 
// Driver code
public static void Main()
{
    int n = 10;
 
    Console.WriteLine(countTriplets(n));
}
}
 
// This code is contributed by mits.

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return an Array containing
// all the perfect squares upto n
function getPerfectSquares(n)
{
    var perfectSquares = [];
    var current = 1, i = 1;
 
    // While current perfect square
    // is less than or equal to n
    while (current <= n)
    {
        perfectSquares.push(current);
        current = Math.pow(++i, 2);
    }
    return perfectSquares;
}
 
// Function to return the count of
// triplet (a, b, c) pairs such that
// a^2 + b^2 = c^2 and
// 1 <= a <= b <= c <= n
function countTriplets(n)
{
     
    // Vector of perfect squares upto n^2
    var perfectSquares = getPerfectSquares(
                                 Math.pow(n, 2));
    var count = 0;
    for(var a = 1; a <= n; a++)
    {
        var aSquare = Math.pow(a, 2);
 
        for(var i = 0;
                i < perfectSquares.length;
                i++)
        {
            var cSquare = perfectSquares[i];
 
            // Since, a^2 + b^2 = c^2
            var bSquare = Math.abs(cSquare -
                                   aSquare);
            var b = Math.sqrt(bSquare);
            var c = Math.sqrt(cSquare);
 
            // If c < a or bSquare is not a
            // perfect square
            if (c < a ||
                !perfectSquares.includes(bSquare))
                continue;
 
            // If triplet pair (a, b, c) satisfy
            // the given condition
            if ((b >= a) && (b <= c) &&
                (aSquare + bSquare == cSquare))
                count++;
        }
    }
    return count;
}
 
// Driver code
var n = 10;
 
document.write(countTriplets(n));
 
// This code is contributed by noob2000
 
</script>
Output: 
2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :