Related Articles

# Count number of permutation of an Array having no SubArray of size two or more from original Array

• Difficulty Level : Easy
• Last Updated : 17 Jun, 2021

Given an array of distinct integer A, the task is to count the number of possible permutations of the given array A[] such that the permutations do not contain any subarray of size 2 or more from the original array.
Examples:

Input: A = [ 1, 3, 9 ]
Output:
All the permutation of [ 1, 3, 9 ] are : [ 1, 3, 9 ], [ 1, 9, 3 ], [ 3, 9, 1 ], [ 3, 1, 9 ], [ 9, 1, 3 ], [ 9, 3, 1 ]
Here [ 1, 3, 9 ], [ 9, 1, 3 ] are removed as they contain sub-array [ 1, 3 ] from original list
and [ 3, 9, 1 ] removed as it contains sub-array [3, 9] from original list so,
Following are the 3 arrays that satisfy the condition : [1, 9, 3], [3, 1, 9], [9, 3, 1]
Input : A = [1, 3, 9, 12]
Output :11

Naive Approach: Iterate through list of all permutations and remove those arrays which contains any sub-array [ i, i+1 ] from A.
Below is the implementation of the above approach:

## Python3

 `# Python implementation of the approach` `# Importing the itertools``from` `itertools ``import` `permutations` `# Function that return count of all the permutation``# having no sub-array of [ i, i + 1 ]``def` `count(arr):``    ``z ``=``[]``    ``perm ``=` `permutations(arr)``    ``for` `i ``in` `list``(perm):``        ``z.append(``list``(i))` `    ``q ``=``[]``    ``for` `i ``in` `range``(``len``(arr)``-``1``):``        ``x, y ``=` `arr[i], arr[i ``+` `1``]``        ``for` `j ``in` `range``(``len``(z)):` `            ``# Finding the indexes where x is present``            ``if` `z[j].index(x)!``=` `len``(z[j])``-``1``:` `                ``# If y is present at position of x + 1``                ``# append into a temp list q``                ``if` `z[j][z[j].index(x)``+``1``]``=``=` `y:``                    ``q.append(z[j])` `    ``# Removing all the lists that are present``    ``# in z ( list of all permutations )``    ``for` `i ``in` `range``(``len``(q)):``         ``if` `q[i] ``in` `z:``             ``z.remove(q[i])``    ``return` `len``(z)` `# Driver Code``A ``=``[``1``, ``3``, ``9``]``print``(count(A))`
Output:

`3`

Efficient Solution : After making the solution for smaller size of array, we can observe a pattern:
The following pattern generates a recurrence:
Suppose the length of array A is n, then:

```count(0) = 1
count(1) = 1
count(n) = n * count(n-1) + (n-1) * count(n-2)```

Below is the implementation of the approach:

## C++

 `// C++ implementation of the approach``#include``using` `namespace` `std;` `// Recursive function that returns``// the count of permutation-based``// on the length of the array.``int` `count(``int` `n)``{``    ``if``(n == 0)``        ``return` `1;``    ``if``(n == 1)``        ``return` `1;``    ``else``        ``return` `(n * count(n - 1)) +``              ``((n - 1) * count(n - 2));``}` `// Driver Code``int` `main()``{``    ``int` `A[] = {1, 2, 3, 9};``    ` `    ``// length of array``    ``int` `n = 4;``        ` `    ``// Output required answer``    ``cout << count(n - 1);``        ` `    ``return` `0;``}` `// This code is contributed by Sanjit Prasad`

## Java

 `// Java implementation of the approach``import` `java.util.*;` `class` `GFG``{` `// Recursive function that returns``// the count of permutation-based``// on the length of the array.``static` `int` `count(``int` `n)``{``    ``if``(n == ``0``)``        ``return` `1``;``    ``if``(n == ``1``)``        ``return` `1``;``    ``else``        ``return` `(n * count(n - ``1``)) +``              ``((n - ``1``) * count(n - ``2``));``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int` `A[] = {``1``, ``2``, ``3``, ``9``};``    ` `    ``// length of array``    ``int` `n = ``4``;``        ` `    ``// Output required answer``    ``System.out.println(count(n - ``1``));``}``}` `// This code is contributed by PrinciRaj1992`

## Python3

 `# Python implementation of the approach` `# Recursive function that returns``# the count of permutation-based``# on the length of the array.` `def` `count(n):``    ``if` `n ``=``=` `0``:``        ``return` `1``    ``if` `n ``=``=` `1``:``        ``return` `1``    ``else``:``        ``return` `(n ``*` `count(n``-``1``)) ``+` `((n``-``1``) ``*` `count(n``-``2``))` `# Driver Code``A ``=``[``1``, ``2``, ``3``, ``9``]``print``(count(``len``(A)``-``1``))`

## C#

 `// C# implementation of the above approach``using` `System;` `class` `GFG``{` `// Recursive function that returns``// the count of permutation-based``// on the length of the array.``static` `int` `count(``int` `n)``{``    ``if``(n == 0)``        ``return` `1;``    ``if``(n == 1)``        ``return` `1;``    ``else``        ``return` `(n * count(n - 1)) +``              ``((n - 1) * count(n - 2));``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``int` `[]A = {1, 2, 3, 9};``    ` `    ``// length of array``    ``int` `n = 4;``        ` `    ``// Output required answer``    ``Console.WriteLine(count(n - 1));``}``}` `// This code is contributed by PrinciRaj1992`

## Javascript

 ``
Output:
`11`

Note: For the above recurrence you can check oeis.org

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up