Skip to content
Related Articles

Related Articles

Improve Article

Count number of paths whose weight is exactly X and has at-least one edge of weight M

  • Last Updated : 30 Apr, 2021

Given an infinite tree and three numbers N, M, and X which has exactly N child from every node. Every edge has a weight of 1, 2, 3, 4..N. The task is to find the count of paths whose weight is exactly X and has a minimum of one edge of weight M in it. 

The diagram above shows a tree shown till level-3 and N = 3. 

Examples:  

Input: N = 3, M = 2, X = 3
Output: 2
The path 1-2 and 2-1 in the image above 

Input:  N = 2, M = 1, X = 4
Output:  4 

Approach: The problem can be solved using Dynamic Programming and memoization. We will use a top-down approach to solve this problem. Recur starting from the root with sum initially as X, and recursively traverse all paths possible( which is from 1 to N). If the node is equal to M, then the second parameter becomes true, else it stays the same which has been passed in the previous call. Store the value in a DP[][] table to avoid visiting same states twice. 



Below is the implementation of the above approach.  

C++




// C++ program to count the number of paths
#include <bits/stdc++.h>
using namespace std;
#define max 4
#define c 2
 
// Function to find the number of paths
int countPaths(int sum, int get, int m, int n, int dp[])
{
 
    // If the summation is more than X
    if (sum < 0)
        return 0;
 
    // If exactly X weights have reached
    if (sum == 0)
        return get;
 
    // Already visited
    if (dp[sum][get] != -1)
        return dp[sum][get];
 
    // Count paths
    int res = 0;
 
    // Traverse in all paths
    for (int i = 1; i <= n; i++) {
 
        // If the edge weight is M
        if (i == m)
            res += countPaths(sum - i, 1, m, n, dp);
        else // Edge's weight is not M
            res += countPaths(sum - i, get, m, n, dp);
    }
 
    dp[sum][get] = res;
 
    return dp[sum][get];
}
 
// Driver Code
int main()
{
    int n = 3, m = 2, x = 3;
 
    int dp[max + 1];
 
    // Initialized the DP array with -1
    for (int i = 0; i <= max; i++)
        for (int j = 0; j < 2; j++)
            dp[i][j] = -1;
 
    // Function to count paths
    cout << countPaths(x, 0, m, n, dp);
}

Java




// Java program to count the number of paths
 
public class GFG{
 
    static int max = 4 ;
    static int  c = 2 ;
     
    // Function to find the number of paths
    static int countPaths(int sum, int get, int m, int n, int dp[][])
    {
     
        // If the summation is more than X
        if (sum < 0)
            return 0;
     
        // If exactly X weights have reached
        if (sum == 0)
            return get;
     
        // Already visited
        if (dp[sum][get] != -1)
            return dp[sum][get];
     
        // Count paths
        int res = 0;
     
        // Traverse in all paths
        for (int i = 1; i <= n; i++) {
     
            // If the edge weight is M
            if (i == m)
                res += countPaths(sum - i, 1, m, n, dp);
            else // Edge's weight is not M
                res += countPaths(sum - i, get, m, n, dp);
        }
     
        dp[sum][get] = res;
     
        return dp[sum][get];
    }
     
    // Driver Code
    public static void main(String []args)
    {
        int n = 3, m = 2, x = 3;
     
        int dp[][] = new int[max + 1][2];
     
        // Initialized the DP array with -1
        for (int i = 0; i <= max; i++)
            for (int j = 0; j < 2; j++)
                dp[i][j] = -1;
     
        // Function to count paths
        System.out.println(countPaths(x, 0, m, n, dp));
    }
    // This code is contributed by Ryuga
}

Python3




# Python3 program to count the number of paths
Max = 4
c = 2
 
# Function to find the number of paths
def countPaths(Sum, get, m, n, dp):
 
    # If the Summation is more than X
    if (Sum < 0):
        return 0
 
    # If exactly X weights have reached
    if (Sum == 0):
        return get
 
    # Already visited
    if (dp[Sum][get] != -1):
        return dp[Sum][get]
 
    # Count paths
    res = 0
 
    # Traverse in all paths
    for i in range(1, n + 1):
 
        # If the edge weight is M
        if (i == m):
            res += countPaths(Sum - i, 1, m, n, dp)
        else: # Edge's weight is not M
            res += countPaths(Sum - i, get, m, n, dp)
     
    dp[Sum][get] = res
 
    return dp[Sum][get]
 
# Driver Code
n = 3
m = 2
x = 3
dp = [[-1 for i in range(2)]
          for i in range(Max + 1)]
 
# Initialized the DP array with -1
for i in range(Max + 1):
    for j in range(2):
        dp[i][j] = -1
 
# Function to count paths
print(countPaths(x, 0, m, n, dp))
 
# This code is contributed by Mohit kumar 29

C#




// C# program to count the number of paths
using System;
 
class GFG
{
    static int max = 4 ;
    static int c = 2 ;
     
    // Function to find the number of paths
    static int countPaths(int sum, int get, int m,
                          int n, int[, ] dp)
    {
     
        // If the summation is more than X
        if (sum < 0)
            return 0;
     
        // If exactly X weights have reached
        if (sum == 0)
            return get;
     
        // Already visited
        if (dp[sum, get] != -1)
            return dp[sum, get];
     
        // Count paths
        int res = 0;
     
        // Traverse in all paths
        for (int i = 1; i <= n; i++)
        {
     
            // If the edge weight is M
            if (i == m)
                res += countPaths(sum - i, 1, m, n, dp);
            else // Edge's weight is not M
                res += countPaths(sum - i, get, m, n, dp);
        }
     
        dp[sum, get] = res;
     
        return dp[sum, get];
    }
     
    // Driver Code
    public static void Main()
    {
        int n = 3, m = 2, x = 3;
     
        int[,] dp = new int[max + 1, 2];
     
        // Initialized the DP array with -1
        for (int i = 0; i <= max; i++)
            for (int j = 0; j < 2; j++)
                dp[i, j] = -1;
     
        // Function to count paths
        Console.WriteLine(countPaths(x, 0, m, n, dp));
    }
}
 
// This code is contributed by Akanksha Rai

PHP




<?php
 
// PHP program to count the number of paths
 
$max = 4;
$c = 2;
 
// Function to find the number of paths
function countPaths($sum, $get, $m, $n, &$dp)
{
    global $max,$c;
    // If the summation is more than X
    if ($sum < 0)
        return 0;
 
    // If exactly X weights have reached
    if ($sum == 0)
        return $get;
 
    // Already visited
    if ($dp[$sum][$get] != -1)
        return $dp[$sum][$get];
 
    // Count paths
    $res = 0;
 
    // Traverse in all paths
    for ($i = 1; $i <= $n; $i++)
    {
 
        // If the edge weight is M
        if ($i == $m)
            $res += countPaths($sum - $i, 1, $m, $n, $dp);
        else // Edge's weight is not M
            $res += countPaths($sum - $i, $get, $m, $n, $dp);
    }
 
    $dp[$sum][$get] = $res;
 
    return $dp[$sum][$get];
}
 
// Driver Code
 
    $n = 3;
    $m = 2;
    $x = 3;
 
    $dp = array_fill(0,$max + 1,NULL);
 
    // Initialized the DP array with -1
    for ($i = 0; $i <= $max; $i++)
        for ($j = 0; $j < 2; $j++)
            $dp[$i][$j] = -1;
 
    // Function to count paths
    echo countPaths($x, 0, $m, $n, $dp);
     
    // This code is contributed by ChitraNayal
?>

Javascript




<script>
 
// Javascript program to count the number of paths
let max = 4;
let c = 2;
 
// Function to find the number of paths
function countPaths(sum, get, m, n, dp)
{
     
    // If the summation is more than X
    if (sum < 0)
        return 0;
   
    // If exactly X weights have reached
    if (sum == 0)
        return get;
   
    // Already visited
    if (dp[sum][get] != -1)
        return dp[sum][get];
   
    // Count paths
    let res = 0;
   
    // Traverse in all paths
    for(let i = 1; i <= n; i++)
    {
         
        // If the edge weight is M
        if (i == m)
            res += countPaths(sum - i, 1,
                              m, n, dp);
             
        // Edge's weight is not M
        else
            res += countPaths(sum - i, get,
                              m, n, dp);
    }
    dp[sum][get] = res;
   
    return dp[sum][get];
}
 
// Driver Code
let  n = 3, m = 2, x = 3;
let dp = new Array(max + 1);
   
// Initialized the DP array with -1
for(let i = 0; i <= max; i++)
{
    dp[i] = new Array(2)
    for(let j = 0; j < 2; j++)
        dp[i][j] = -1;
}
 
// Function to count paths
document.write(countPaths(x, 0, m, n, dp));
 
// This code is contributed by avanitrachhadiya2155
     
</script>
Output: 
2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :