Count number of pairs in array having sum divisible by K | SET 2

• Difficulty Level : Medium
• Last Updated : 23 Apr, 2021

Given an array A[] and positive integer K, the task is to count the total number of pairs in the array whose sum is divisible by K.
Examples:

Input : A[] = {2, 2, 1, 7, 5, 3}, K = 4
Output :
There are five pairs possible whose sum
Is divisible by ‘4’ i.e., (2, 2),
(1, 7), (7, 5), (1, 3) and (5, 3)
Input : A[] = {5, 9, 36, 74, 52, 31, 42}, K = 3
Output :

Approach: In the previous post, an approach using hashing is discussed. In this article, another approach using hashing is discussed.

Analyzing the statement we can say we need to make pairs of (a, b) such that:

(a + b) % K = 0
=>    a%K + b%K = 0
=>    a%K + b%K = K%K
=>    b%K = K%K - a%K
=>     b%K = (K - a%K) % K.     {Range of a%K => [0,K-1]}

The idea is a can be paired with (K — a%K) % K. Now we have to find the same for each a present in the given array.

The algorithm would create a hash-map:
Keys: possible remainders for value%K i.e 0 to K-1
Values: count of values with value%K = key

The stepwise algorithm is:

1. Find x = arr[i]%k.
2. This array element can be paired with array elements having mod value k-x. This frequency count of array elements is stored in hash. So add that count to answer.
3. Increment count for x in hash.
4. In case the value of x is zero, then it can be paired only with elements having 0 mod value.

Below is the implementation of the above approach:

C++

 // C++ Program to count pairs// whose sum divisible by 'K'#include using namespace std; // Program to count pairs whose sum divisible// by 'K'int countKdivPairs(int A[], int n, int K){    // Create a frequency array to count    // occurrences of all remainders when    // divided by K    int freq[K] = { 0 };     // To store count of pairs.    int ans = 0;     // Traverse the array, compute the remainder    // and add k-remainder value hash count to ans    for (int i = 0; i < n; i++) {        int rem = A[i] % K;               // Count number of ( A[i], (K - rem)%K ) pairs          ans += freq[(K - rem) % K];         // Increment count of remainder in hash map        freq[rem]++;    }     return ans;} // Driver codeint main(){     int A[] = { 2, 2, 1, 7, 5, 3 };    int n = sizeof(A) / sizeof(A);    int K = 4;    cout << countKdivPairs(A, n, K);     return 0;}

Java

 // JAVA Program to count pairs whose sum divisible// by 'K'class GFG{   static int countKdivPairs(int A[], int n, int K)  {      // Create a frequency array to count      // occurrences of all remainders when      // divided by K      int []freq = new int[K];       // To store count of pairs.      int ans = 0;       // Traverse the array, compute the remainder      // and add k-remainder value hash count to ans      for (int i = 0; i < n; i++)      {          int rem = A[i] % K;           // Count number of ( A[i], (K - rem)%K ) pairs          ans += freq[(K - rem) % K];           // Increment count of remainder in hash map          freq[rem]++;      }       return ans;  } // Driver code  public static void main(String[] args)  {      int A[] = { 2, 2, 1, 7, 5, 3 };      int n = A.length;      int K = 4;      System.out.println(countKdivPairs(A, n, K));  }} // This code is contributed by Princi Singh, Yadvendra Naveen

Python3

 # Python Program to count pairs whose sum divisible# by 'K'def countKdivPairs(A, n, K):         # Create a frequency array to count    # occurrences of all remainders when    # divided by K    freq = [0 for i in range(K)]     # To store count of pairs.    ans = 0     # Traverse the array, compute the remainder    # and add k-remainder value hash count to ans    for i in range(n):        rem = A[i] % K                 # Count number of ( A[i], (K - rem)%K ) pairs        ans += freq[(K - rem) % K]                 # Increment count of remainder in hash map        freq[rem] += 1     return ans # Driver codeif __name__ == '__main__':    A = [2, 2, 1, 7, 5, 3]    n = len(A)    K = 4    print(countKdivPairs(A, n, K)) # This code is contributed by# Surendra_Gangwar, Yadvendra Naveen

C#

 // C# Program to count pairs// whose sum divisible by 'K'using System; class GFG{ // Program to count pairs whose sum divisible// by 'K'static int countKdivPairs(int []A, int n, int K){    // Create a frequency array to count    // occurrences of all remainders when    // divided by K    int []freq = new int[K];     // To store count of pairs.    int ans = 0;     // Traverse the array, compute the remainder    // and add k-remainder value hash count to ans    for (int i = 0; i < n; i++)    {        int rem = A[i] % K;         // Count number of ( A[i], (K - rem)%K ) pairs          ans += freq[(K - rem) % K];         // Increment count of remainder in hash map        freq[rem]++;    }     return ans;} // Driver codepublic static void Main(String[] args){    int []A = { 2, 2, 1, 7, 5, 3 };    int n = A.Length;    int K = 4;    Console.WriteLine(countKdivPairs(A, n, K));}} // This code contributed by Rajput-Ji, Yadvendra Naveen

Javascript


Output:
5

Time Complexity: O(N)
Auxiliary Space: O(K)

My Personal Notes arrow_drop_up