Count number of pairs in array having sum divisible by K | SET 2

Given an array A[] and positive integer K, the task is to count the total number of pairs in the array whose sum is divisible by K.
Examples: 

Input : A[] = {2, 2, 1, 7, 5, 3}, K = 4 
Output :
There are five pairs possible whose sum 
Is divisible by ‘4’ i.e., (2, 2), 
(1, 7), (7, 5), (1, 3) and (5, 3)
Input : A[] = {5, 9, 36, 74, 52, 31, 42}, K = 3 
Output :
 

Approach: In the previous post, an approach using hashing is discussed. In this article, another approach using hashing is discussed.

Analyzing the statement we can say we need to make pairs of (a, b) such that:

     (a + b) % K = 0
 =>    a%K + b%K = 0
 =>    a%K + b%K = K%K
 =>    b%K = K%K - a%K
 =>     b%K = (K - a%K) % K.     {Range of a%K => [0,K-1]}

The idea is a can be paired with (K — a%K) % K. Now we have to find the same for each a present in the given array.



The algorithm would create a hash-map:
Keys: possible remainders for value%K i.e 0 to K-1 
Values: count of values with value%K = key

The stepwise algorithm is: 

  1. Find x = arr[i]%k.
  2. This array element can be paired with array elements having mod value k-x. This frequency count of array elements is stored in hash. So add that count to answer.
  3. Increment count for x in hash.
  4. In case the value of x is zero, then it can be paired only with elements having 0 mod value.

Below is the implementation of the above approach: 
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to count pairs
// whose sum divisible by 'K'
#include <bits/stdc++.h>
using namespace std;
 
// Program to count pairs whose sum divisible
// by 'K'
int countKdivPairs(int A[], int n, int K)
{
    // Create a frequency array to count
    // occurrences of all remainders when
    // divided by K
    int freq[K] = { 0 };
 
    // To store count of pairs.
    int ans = 0;
 
    // Traverse the array, compute the remainder
    // and add k-remainder value hash count to ans
    for (int i = 0; i < n; i++) {
        int rem = A[i] % K;
       
        // Count number of ( A[i], (K - rem)%K ) pairs
          ans += freq[(K - rem) % K];
 
        // Increment count of remainder in hash map
        freq[rem]++;
    }
 
    return ans;
}
 
// Driver code
int main()
{
 
    int A[] = { 2, 2, 1, 7, 5, 3 };
    int n = sizeof(A) / sizeof(A[0]);
    int K = 4;
    cout << countKdivPairs(A, n, K);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// JAVA Program to count pairs whose sum divisible
// by 'K'
class GFG
{
 
  static int countKdivPairs(int A[], int n, int K)
  {
      // Create a frequency array to count
      // occurrences of all remainders when
      // divided by K
      int []freq = new int[K];
 
      // To store count of pairs.
      int ans = 0;
 
      // Traverse the array, compute the remainder
      // and add k-remainder value hash count to ans
      for (int i = 0; i < n; i++)
      {
          int rem = A[i] % K;
 
          // Count number of ( A[i], (K - rem)%K ) pairs
          ans += freq[(K - rem) % K];
 
          // Increment count of remainder in hash map
          freq[rem]++;
      }
 
      return ans;
  }
 
// Driver code
  public static void main(String[] args)
  {
      int A[] = { 2, 2, 1, 7, 5, 3 };
      int n = A.length;
      int K = 4;
      System.out.println(countKdivPairs(A, n, K));
  }
}
 
// This code is contributed by Princi Singh, Yadvendra Naveen

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program to count pairs whose sum divisible
# by 'K'
def countKdivPairs(A, n, K):
     
    # Create a frequency array to count
    # occurrences of all remainders when
    # divided by K
    freq = [0 for i in range(K)]
 
    # To store count of pairs.
    ans = 0
 
    # Traverse the array, compute the remainder
    # and add k-remainder value hash count to ans
    for i in range(n):
        rem = A[i] % K
         
        # Count number of ( A[i], (K - rem)%K ) pairs
        ans += freq[(K - rem) % K]
         
        # Increment count of remainder in hash map
        freq[rem] += 1
 
    return ans
 
# Driver code
if __name__ == '__main__':
    A = [2, 2, 1, 7, 5, 3]
    n = len(A)
    K = 4
    print(countKdivPairs(A, n, K))
 
# This code is contributed by
# Surendra_Gangwar, Yadvendra Naveen

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to count pairs
// whose sum divisible by 'K'
using System;
 
class GFG
{
 
// Program to count pairs whose sum divisible
// by 'K'
static int countKdivPairs(int []A, int n, int K)
{
    // Create a frequency array to count
    // occurrences of all remainders when
    // divided by K
    int []freq = new int[K];
 
    // To store count of pairs.
    int ans = 0;
 
    // Traverse the array, compute the remainder
    // and add k-remainder value hash count to ans
    for (int i = 0; i < n; i++)
    {
        int rem = A[i] % K;
 
        // Count number of ( A[i], (K - rem)%K ) pairs
          ans += freq[(K - rem) % K];
 
        // Increment count of remainder in hash map
        freq[rem]++;
    }
 
    return ans;
}
 
// Driver code
public static void Main(String[] args)
{
    int []A = { 2, 2, 1, 7, 5, 3 };
    int n = A.Length;
    int K = 4;
    Console.WriteLine(countKdivPairs(A, n, K));
}
}
 
// This code contributed by Rajput-Ji, Yadvendra Naveen

chevron_right


Output: 

5


 

Time Complexity: O(N) 
Auxiliary Space: O(K)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


A Programmer and A Machine learning Enthusiast

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.