Skip to content
Related Articles

Related Articles

Count number of pairs (i, j) up to N that can be made equal on multiplying with a pair from the range [1, N / 2]
  • Difficulty Level : Hard
  • Last Updated : 07 May, 2021

Given a positive even integer N, the task is to find the number of pairs (i, j) from the range [1, N] such that the product of i and L1 is the same as the product of j and L2 where i < j and L1 and L2 any number from the range [1, N/2].

Examples:

Input: N = 4
Output: 2
Explanation:
The possible pairs satisfying the given criteria are:

  1. (1, 2): As 1 < 2, and 1*2 = 2*1 where L1 = 2 and L2 = 1.
  2. (2, 4): As 2 < 4 and 2*2 = 4*1 where L1 = 2 and L2 = 1.

Therefore, the total count is 2.

Input: N = 6
Output: 7



Naive Approach: The given problem can be solved based on the following observations:

Let i * L1 = j * L2 = lcm(i, j) — (1)
⇒ L1 = lcm(i, j)/ i
= j/gcd(i, j)

Similarly, L2 = i/gcd(i, j)

Now, for the condition to be satisfied, L1 and L2 must be in the range [1, N/2].

Therefore, the idea is to generate all possible pairs (i, j) over the range [1,  N] and if there exist any pair (i, j) such that the value of i/gcd(i, j) and j/gcd(i, j) is less than N/2, then increment the count of pairs by 1. After checking for all the pairs, print the value of the count as the result.

Time Complexity: O(N2*log N)
Auxiliary Space: O(1)

Efficient Approach: The above approach can also be optimized by using Euler’s Totient function. There exist the following 2 cases for any pair (i, j):

  • Case 1: If the pair (i, j) lies in the range [1, N/2], then all the possible pairs formed will satisfy the given condition. Therefore, the total count of pairs is given by (z*(z – 1))/2, where z = N/2.
  • Case 2: If all possible pairs (i, j) lies in the range [N/2 + 1, N] having gcd(i, j) is greater than 1 satisfy the given conditions.

Follow the steps below to count the total number of this type of pairs:

  • Compute Φ for all numbers smaller than or equal to N by using Euler’s Totient function for all numbers smaller than or equal to N.
  • For a number j, the total number of possible pairs (i, j) can be calculated as (j – Φ(j) – 1).
  • For each number in the range [N/2 + 1, N], count the total number pairs using the above formula.
  • After completing the above steps, print the sum of values obtained in the above two steps as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to compute totient of all
// numbers smaller than or equal to N
void computeTotient(int N, int phi[])
{
    // Iterate over the range [2, N]
    for (int p = 2; p <= N; p++) {
 
        // If phi[p] is not computed
        // already, then p is prime
        if (phi[p] == p) {
 
            // Phi of a prime number
            // p is (p - 1)
            phi[p] = p - 1;
 
            // Update phi values of
            // all multiples of p
            for (int i = 2 * p; i <= N;
                 i += p) {
 
                // Add contribution of p
                // to its multiple i by
                // multiplying with (1 - 1/p)
                phi[i] = (phi[i] / p) * (p - 1);
            }
        }
    }
}
 
// Function to count the pairs (i, j)
// from the range [1, N], satisfying
// the given condition
void countPairs(int N)
{
    // Stores the counts of first and
    // second type of pairs respectively
    int cnt_type1 = 0, cnt_type2 = 0;
 
    // Count of first type of pairs
    int half_N = N / 2;
    cnt_type1 = (half_N * (half_N - 1)) / 2;
 
    // Stores the  phi or totient values
    int phi[N + 1];
 
    for (int i = 1; i <= N; i++) {
        phi[i] = i;
    }
 
    // Calculate the Phi values
    computeTotient(N, phi);
 
    // Iterate over the range
    // [N/2 + 1, N]
    for (int i = (N / 2) + 1;
         i <= N; i++)
 
        // Update the value of
        // cnt_type2
        cnt_type2 += (i - phi[i] - 1);
 
    // Print the total count
    cout << cnt_type1 + cnt_type2;
}
 
// Driver Code
int main()
{
    int N = 6;
    countPairs(N);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to compute totient of all
// numbers smaller than or equal to N
static void computeTotient(int N, int phi[])
{
     
    // Iterate over the range [2, N]
    for(int p = 2; p <= N; p++)
    {
         
        // If phi[p] is not computed
        // already, then p is prime
        if (phi[p] == p)
        {
             
            // Phi of a prime number
            // p is (p - 1)
            phi[p] = p - 1;
 
            // Update phi values of
            // all multiples of p
            for(int i = 2 * p; i <= N; i += p)
            {
                 
                // Add contribution of p
                // to its multiple i by
                // multiplying with (1 - 1/p)
                phi[i] = (phi[i] / p) * (p - 1);
            }
        }
    }
}
 
// Function to count the pairs (i, j)
// from the range [1, N], satisfying
// the given condition
static void countPairs(int N)
{
     
    // Stores the counts of first and
    // second type of pairs respectively
    int cnt_type1 = 0, cnt_type2 = 0;
 
    // Count of first type of pairs
    int half_N = N / 2;
    cnt_type1 = (half_N * (half_N - 1)) / 2;
 
    // Stores the  phi or totient values
    int []phi = new int[N + 1];
 
    for(int i = 1; i <= N; i++)
    {
        phi[i] = i;
    }
 
    // Calculate the Phi values
    computeTotient(N, phi);
 
    // Iterate over the range
    // [N/2 + 1, N]
    for(int i = (N / 2) + 1;
            i <= N; i++)
 
        // Update the value of
        // cnt_type2
        cnt_type2 += (i - phi[i] - 1);
 
    // Print the total count
    System.out.print(cnt_type1 + cnt_type2);
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 6;
     
    countPairs(N);
}
}
 
// This code is contributed by Amit Katiyar

Python3




# Python3 program for the above approach
 
# Function to compute totient of all
# numbers smaller than or equal to N
def computeTotient(N, phi):
 
    # Iterate over the range [2, N]
    for p in range(2, N + 1):
 
        # If phi[p] is not computed
        # already then p is prime
        if phi[p] == p:
 
            # Phi of a prime number
            # p is (p - 1)
            phi[p] = p - 1
 
            # Update phi values of
            # all multiples of p
            for i in range(2 * p, N + 1, p):
 
                # Add contribution of p
                # to its multiple i by
                # multiplying with (1 - 1/p)
                phi[i] = (phi[i] // p) * (p - 1)
 
# Function to count the pairs (i, j)
# from the range [1, N], satisfying
# the given condition
def countPairs(N):
 
    # Stores the counts of first and
    # second type of pairs respectively
    cnt_type1 = 0
    cnt_type2 = 0
 
    # Count of first type of pairs
    half_N = N // 2
    cnt_type1 = (half_N * (half_N - 1)) // 2
 
    # Count of second type of pairs
 
    # Stores the  phi or totient values
    phi = [0 for i in range(N + 1)]
 
    for i in range(1, N + 1):
        phi[i] = i
 
    # Calculate the Phi values
    computeTotient(N, phi)
 
    # Iterate over the range
    # [N/2 + 1, N]
    for i in range((N // 2) + 1, N + 1):
 
        # Update the value of
        # cnt_type2
        cnt_type2 += (i - phi[i] - 1)
 
    # Print the total count
    print(cnt_type1 + cnt_type2)
 
# Driver Code
if __name__ == '__main__':
 
    N = 6
    countPairs(N)
 
    # This code is contributed by kundudinesh007.

C#




// C# program for the above approach
 
using System;
class GFG {
    // Function to compute totient of all
    // numbers smaller than or equal to N
    static void computeTotient(int N, int[] phi)
    {
        // Iterate over the range [2, N]
        for (int p = 2; p <= N; p++) {
 
            // If phi[p] is not computed
            // already, then p is prime
            if (phi[p] == p) {
 
                // Phi of a prime number
                // p is (p - 1)
                phi[p] = p - 1;
 
                // Update phi values of
                // all multiples of p
                for (int i = 2 * p; i <= N; i += p) {
 
                    // Add contribution of p
                    // to its multiple i by
                    // multiplying with (1 - 1/p)
                    phi[i] = (phi[i] / p) * (p - 1);
                }
            }
        }
    }
 
    // Function to count the pairs (i, j)
    // from the range [1, N], satisfying
    // the given condition
    static void countPairs(int N)
    {
        // Stores the counts of first and
        // second type of pairs respectively
        int cnt_type1 = 0, cnt_type2 = 0;
 
        // Count of first type of pairs
        int half_N = N / 2;
        cnt_type1 = (half_N * (half_N - 1)) / 2;
 
        // Stores the  phi or totient values
        int[] phi = new int[N + 1];
 
        for (int i = 1; i <= N; i++) {
            phi[i] = i;
        }
 
        // Calculate the Phi values
        computeTotient(N, phi);
 
        // Iterate over the range
        // [N/2 + 1, N]
        for (int i = (N / 2) + 1; i <= N; i++)
 
            // Update the value of
            // cnt_type2
            cnt_type2 += (i - phi[i] - 1);
 
        // Print the total count
        Console.Write(cnt_type1 + cnt_type2);
    }
 
    // Driver Code
    public static void Main()
    {
        int N = 6;
        countPairs(N);
    }
}
 
// This code is contributed by ukasp.
Output: 
7

 

Time Complexity: O(N*log(log(N)))
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :