Count number of coordinates from an array satisfying the given conditions
Given an array arr[] consisting of N coordinates in the Cartesian Plane, the task is to find the number of coordinates, such as (X, Y), that satisfies all the following conditions:
- All possible arr[i][0] must be less than X and arr[i][1] must be equal to Y.
- All possible arr[i][0] must be greater than X and arr[i][1] must be equal to Y.
- All possible arr[i][0] must be less than Y and arr[i][1] must be equal to X.
- All possible arr[i][0] must be greater than Y and arr[i][1] must be equal to X.
Examples:
Input: arr[][] = {{0, 0}, {0, 1}, {1, 0}, {0, -1}, {-1, 0}}
Output: 1
Explanation: There exists only one coordinate that satisfy the given condition, i.e. (0, 0), based on the following conditions:
- arr[2] = {1, 0}: Since arr[2][0](= 1) > X(= 0) and arr[2][1](= 0) == Y(= 0), condition 1 is satisfied.
- arr[4] = {-1, 0}: Since arr[4][0](= -1) < 0 and arr[4][1](= 0) == Y(= 0), condition 2 is satisfied.
- arr[1] = {0, 1}: Since arr[1][0](= 0) == X(= 0) and arr[1][1](= 1) > Y(= 0), condition 3 is satisfied.
- arr[3] = {0, -1}: Since arr[3][0](= 0) == X(= 0) and arr[3][1](= -1) < Y(= 0), condition 4 is satisfied.
Therefore, the total number of points is 1.
Input: arr[][] = {{1, 0}, {2, 0}, {1, 1}, {1, -1}}
Output: 0
Approach: The given problem can be solved by considering every coordinate, say (arr[i][0], arr[i][1]) as the resultant coordinates, and if the coordinate (arr[i][0], arr[i][1]) satisfies all the given conditions, then count the current coordinates. After checking for all the coordinates, print the value of the total count obtained.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count the number of // coordinates from a given set // that satisfies the given conditions int centralPoints( int arr[][2], int N) { // Stores the count of central points int count = 0; // Store the count of // each x and y coordinates int c1, c2, c3, c4; // Find all possible pairs for ( int i = 0; i < N; i++) { // Initialize variables c1, c2, // c3, c4 to define the status // of conditions c1 = 0, c2 = 0, c3 = 0; c4 = 0; // Stores value of each point int x = arr[i][0]; int y = arr[i][1]; // Check the conditions for // each point by generating // all possible pairs for ( int j = 0; j < N; j++) { // If arr[j][0] > x and // arr[j][1] == y if (arr[j][0] > x && arr[j][1] == y) { c1 = 1; } // If arr[j][0] < x and // arr[j][1] == y if (arr[j][1] > y && arr[j][0] == x) { c2 = 1; } // If arr[j][1] > y and // arr[j][0] == x if (arr[j][0] < x && arr[j][1] == y) { c3 = 1; } // If arr[j][1] < y and // arr[j][0] == x if (arr[j][1] < y && arr[j][0] == x) { c4 = 1; } } // If all conditions satisfy // then point is central point if (c1 + c2 + c3 + c4 == 4) { // Increment the count by 1 count++; } } // Return the count return count; } // Driver Code int main() { int arr[4][2] = { { 1, 0 }, { 2, 0 }, { 1, 1 }, { 1, -1 } }; int N = sizeof (arr) / sizeof (arr[0]); cout << centralPoints(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; public class GFG { // Function to count the number of // coordinates from a given set // that satisfies the given conditions static int centralPoints( int arr[][], int N) { // Stores the count of central points int count = 0 ; // Store the count of // each x and y coordinates int c1, c2, c3, c4; // Find all possible pairs for ( int i = 0 ; i < N; i++) { // Initialize variables c1, c2, // c3, c4 to define the status // of conditions c1 = 0 ; c2 = 0 ; c3 = 0 ; c4 = 0 ; // Stores value of each point int x = arr[i][ 0 ]; int y = arr[i][ 1 ]; // Check the conditions for // each point by generating // all possible pairs for ( int j = 0 ; j < N; j++) { // If arr[j][0] > x and // arr[j][1] == y if (arr[j][ 0 ] > x && arr[j][ 1 ] == y) { c1 = 1 ; } // If arr[j][0] < x and // arr[j][1] == y if (arr[j][ 1 ] > y && arr[j][ 0 ] == x) { c2 = 1 ; } // If arr[j][1] > y and // arr[j][0] == x if (arr[j][ 0 ] < x && arr[j][ 1 ] == y) { c3 = 1 ; } // If arr[j][1] < y and // arr[j][0] == x if (arr[j][ 1 ] < y && arr[j][ 0 ] == x) { c4 = 1 ; } } // If all conditions satisfy // then point is central point if (c1 + c2 + c3 + c4 == 4 ) { // Increment the count by 1 count++; } } // Return the count return count; } // Driver Code public static void main(String[] args) { int arr[][] = { { 1 , 0 }, { 2 , 0 }, { 1 , 1 }, { 1 , - 1 } }; int N = arr.length; System.out.println(centralPoints(arr, N)); } } // This code is contributed by Kingash. |
Python3
# Python3 program for the above approach # Function to count the number of # coordinates from a given set # that satisfies the given conditions def centralPoints(arr, N): # Stores the count of central points count = 0 # Find all possible pairs for i in range (N): # Initialize variables c1, c2, # c3, c4 to define the status # of conditions c1 = 0 c2 = 0 c3 = 0 c4 = 0 # Stores value of each point x = arr[i][ 0 ] y = arr[i][ 1 ] # Check the conditions for # each point by generating # all possible pairs for j in range (N): # If arr[j][0] > x and # arr[j][1] == y if (arr[j][ 0 ] > x and arr[j][ 1 ] = = y): c1 = 1 # If arr[j][0] < x and # arr[j][1] == y if (arr[j][ 1 ] > y and arr[j][ 0 ] = = x): c2 = 1 # If arr[j][1] > y and # arr[j][0] == x if (arr[j][ 0 ] < x and arr[j][ 1 ] = = y): c3 = 1 # If arr[j][1] < y and # arr[j][0] == x if (arr[j][ 1 ] < y and arr[j][ 0 ] = = x): c4 = 1 # If all conditions satisfy # then point is central point if (c1 + c2 + c3 + c4 = = 4 ): # Increment the count by 1 count + = 1 # Return the count return count # Driver Code if __name__ = = '__main__' : arr = [ [ 1 , 0 ], [ 2 , 0 ], [ 1 , 1 ], [ 1 , - 1 ] ] N = len (arr) print (centralPoints(arr, N)); # This code is contributed by SURENDRA_GANGWAR |
C#
// C# program for the above approach using System; class GFG{ // Function to count the number of // coordinates from a given set // that satisfies the given conditions static int centralPoints( int [,] arr, int N) { // Stores the count of central points int count = 0; // Store the count of // each x and y coordinates int c1, c2, c3, c4; // Find all possible pairs for ( int i = 0; i < N; i++) { // Initialize variables c1, c2, // c3, c4 to define the status // of conditions c1 = 0; c2 = 0; c3 = 0; c4 = 0; // Stores value of each point int x = arr[i, 0]; int y = arr[i, 1]; // Check the conditions for // each point by generating // all possible pairs for ( int j = 0; j < N; j++) { // If arr[j][0] > x and // arr[j][1] == y if (arr[j, 0] > x && arr[j, 1] == y) { c1 = 1; } // If arr[j][0] < x and // arr[j][1] == y if (arr[j, 1] > y && arr[j, 0] == x) { c2 = 1; } // If arr[j][1] > y and // arr[j][0] == x if (arr[j, 0] < x && arr[j, 1] == y) { c3 = 1; } // If arr[j][1] < y and // arr[j][0] == x if (arr[j, 1] < y && arr[j, 0] == x) { c4 = 1; } } // If all conditions satisfy // then point is central point if (c1 + c2 + c3 + c4 == 4) { // Increment the count by 1 count++; } } // Return the count return count; } // Driver Code public static void Main( string [] args) { int [,] arr = { { 1, 0 }, { 2, 0 }, { 1, 1 }, { 1, -1 } }; int N = arr.GetLength(0); Console.WriteLine(centralPoints(arr, N)); } } // This code is contributed by ukasp |
Javascript
<script> // Javascript program to implement the // above approach // Function to count the number of // coordinates from a given set // that satisfies the given conditions function centralPoints(arr, N) { // Stores the count of central points let count = 0; // Store the count of // each x and y coordinates let c1, c2, c3, c4; // Find all possible pairs for (let i = 0; i < N; i++) { // Initialize variables c1, c2, // c3, c4 to define the status // of conditions c1 = 0; c2 = 0; c3 = 0; c4 = 0; // Stores value of each point let x = arr[i][0]; let y = arr[i][1]; // Check the conditions for // each point by generating // all possible pairs for (let j = 0; j < N; j++) { // If arr[j][0] > x and // arr[j][1] == y if (arr[j][0] > x && arr[j][1] == y) { c1 = 1; } // If arr[j][0] < x and // arr[j][1] == y if (arr[j][1] > y && arr[j][0] == x) { c2 = 1; } // If arr[j][1] > y and // arr[j][0] == x if (arr[j][0] < x && arr[j][1] == y) { c3 = 1; } // If arr[j][1] < y and // arr[j][0] == x if (arr[j][1] < y && arr[j][0] == x) { c4 = 1; } } // If all conditions satisfy // then point is central point if (c1 + c2 + c3 + c4 == 4) { // Increment the count by 1 count++; } } // Return the count return count; } // Driver Code let arr = [[ 1, 0 ], [ 2, 0 ], [ 1, 1 ], [ 1, -1 ]]; let N = arr.length; document.write(centralPoints(arr, N)); // This code is contributed by splevel62. </script> |
0
Time Complexity: O(N2)
Auxiliary Space: O(1), since no extra space has been taken.
Please Login to comment...