Skip to content
Related Articles

Related Articles

Improve Article

Count number of increasing subsequences of size k

  • Difficulty Level : Hard
  • Last Updated : 12 Apr, 2021

Given an array arr[] containing n integers. The problem is to count number of increasing subsequences in the array of size k.
Examples: 
 

Input : arr[] = {2, 6, 4, 5, 7}, 
            k = 3
Output : 5
The subsequences of size '3' are:
{2, 6, 7}, {2, 4, 5}, {2, 4, 7},
{2, 5, 7} and {4, 5, 7}.

Input : arr[] = {12, 8, 11, 13, 10, 15, 14, 16, 20}, 
            k = 4
Output : 39

 

Approach: The idea is to use Dynamic Programming by define 2D matrix, say dp[][]. dp[i][j] stores the count of increasing subsequences of size i ending with element arr[j]. So dp[i][j] can be defined as:
 

dp[i][j] = 1, where i = 1 and 1 <= j <= n 
dp[i][j] = sum(dp[i-1][j]), where 1 < i <= k, i <= j <= n and arr[m] < arr[j] for (i-1) <= m < j.

Below is the implementation of above approach:
 



C++




// C++ implementation to count number of
// increasing subsequences of size k
#include <bits/stdc++.h>
 
using namespace std;
 
// function to count number of increasing
// subsequences of size k
int numOfIncSubseqOfSizeK(int arr[], int n, int k)
{
    int dp[k][n], sum = 0;
    memset(dp, 0, sizeof(dp));
 
    // count of increasing subsequences of size 1
    // ending at each arr[i]
    for (int i = 0; i < n; i++)
        dp[0][i] = 1;
 
    // building up the matrix dp[][]
    // Here 'l' signifies the size of
    // increassing subsequence of size (l+1).
    for (int l = 1; l < k; l++) {
 
        // for each increasing subsequence of size 'l'
        // ending with element arr[i]
        for (int i = l; i < n; i++) {
 
            // count of increasing subsequences of size 'l'
            // ending with element arr[i]
            dp[l][i] = 0;
            for (int j = l - 1; j < i; j++) {
                if (arr[j] < arr[i])
                    dp[l][i] += dp[l - 1][j];
            }
        }
    }
 
    // sum up the count of increasing subsequences of
    // size 'k' ending at each element arr[i]
    for (int i = k - 1; i < n; i++)
        sum += dp[k - 1][i];
 
    // required number of increasing
    // subsequences of size k
    return sum;
}
 
// Driver program to test above
int main()
{
    int arr[] = { 12, 8, 11, 13, 10, 15, 14, 16, 20 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 4;
 
    cout << "Number of Increasing Subsequences of size "
         << k << " = " << numOfIncSubseqOfSizeK(arr, n, k);
 
    return 0;
}

Java




//Java implementation to count number of
// increasing subsequences of size k
 
class GFG {
 
// function to count number of increasing
// subsequences of size k
    static int numOfIncSubseqOfSizeK(int arr[], int n, int k) {
        int dp[][] = new int[k][n], sum = 0;
 
        // count of increasing subsequences of size 1
        // ending at each arr[i]
        for (int i = 0; i < n; i++) {
            dp[0][i] = 1;
        }
 
        // building up the matrix dp[][]
        // Here 'l' signifies the size of
        // increassing subsequence of size (l+1).
        for (int l = 1; l < k; l++) {
 
            // for each increasing subsequence of size 'l'
            // ending with element arr[i]
            for (int i = l; i < n; i++) {
 
                // count of increasing subsequences of size 'l'
                // ending with element arr[i]
                dp[l][i] = 0;
                for (int j = l - 1; j < i; j++) {
                    if (arr[j] < arr[i]) {
                        dp[l][i] += dp[l - 1][j];
                    }
                }
            }
        }
 
        // sum up the count of increasing subsequences of
        // size 'k' ending at each element arr[i]
        for (int i = k - 1; i < n; i++) {
            sum += dp[k - 1][i];
        }
 
        // required number of increasing
        // subsequences of size k
        return sum;
    }
 
// Driver program to test above
    public static void main(String[] args) {
        int arr[] = {12, 8, 11, 13, 10, 15, 14, 16, 20};
        int n = arr.length;
        int k = 4;
 
        System.out.print("Number of Increasing Subsequences of size "
                + k + " = " + numOfIncSubseqOfSizeK(arr, n, k));
 
    }
}
// This code is contributed by 29AjayKumar

Python3




# Python3 implementation to count number
# of increasing subsequences of size k
import math as mt
 
# function to count number of increasing
# subsequences of size k
def numOfIncSubseqOfSizeK(arr, n, k):
 
    dp = [[0 for i in range(n)]
             for i in range(k)]
              
    # count of increasing subsequences
    # of size 1 ending at each arr[i]
    for i in range(n):
        dp[0][i] = 1
 
    # building up the matrix dp[][]
    # Here 'l' signifies the size of
    # increassing subsequence of size (l+1).
    for l in range(1, k):
 
        # for each increasing subsequence of
        # size 'l' ending with element arr[i]
        for i in range(l, n):
 
            # count of increasing subsequences of
            # size 'l' ending with element arr[i]
            dp[l][i] = 0
            for j in range(l - 1, i):
                if (arr[j] < arr[i]):
                    dp[l][i] += dp[l - 1][j]
             
    # Sum up the count of increasing subsequences
    # of size 'k' ending at each element arr[i]
    Sum = 0
    for i in range(k - 1, n):
        Sum += dp[k - 1][i]
 
    # required number of increasing
    # subsequences of size k
    return Sum
 
# Driver Code
arr = [12, 8, 11, 13, 10,
          15, 14, 16, 20 ]
n = len(arr)
k = 4
 
print("Number of Increasing Subsequences of size",
         k, "=", numOfIncSubseqOfSizeK(arr, n, k))
 
# This code is contributed by
# Mohit kumar 29

C#




// C# implementation to count number of
// increasing subsequences of size k
  
using System;
                     
public class GFG {
  
// function to count number of increasing
// subsequences of size k
    static int numOfIncSubseqOfSizeK(int []arr, int n, int k) {
        int [,]dp = new int[k,n]; int sum = 0;
  
        // count of increasing subsequences of size 1
        // ending at each arr[i]
        for (int i = 0; i < n; i++) {
            dp[0,i] = 1;
        }
  
        // building up the matrix dp[,]
        // Here 'l' signifies the size of
        // increassing subsequence of size (l+1).
        for (int l = 1; l < k; l++) {
  
            // for each increasing subsequence of size 'l'
            // ending with element arr[i]
            for (int i = l; i < n; i++) {
  
                // count of increasing subsequences of size 'l'
                // ending with element arr[i]
                dp[l,i] = 0;
                for (int j = l - 1; j < i; j++) {
                    if (arr[j] < arr[i]) {
                        dp[l,i] += dp[l - 1,j];
                    }
                }
            }
        }
  
        // sum up the count of increasing subsequences of
        // size 'k' ending at each element arr[i]
        for (int i = k - 1; i < n; i++) {
            sum += dp[k - 1,i];
        }
  
        // required number of increasing
        // subsequences of size k
        return sum;
    }
  
// Driver program to test above
    public static void Main() {
        int []arr = {12, 8, 11, 13, 10, 15, 14, 16, 20};
        int n = arr.Length;
        int k = 4;
  
        Console.Write("Number of Increasing Subsequences of size "
                + k + " = " + numOfIncSubseqOfSizeK(arr, n, k));
  
    }
}
// This code is contributed by 29AjayKumar

PHP




<?php
// PHP implementation to count
// number of increasing
// subsequences of size k
 
// function to count number
// of increasing subsequences
// of size k
function numOfIncSubseqOfSizeK($arr,
                               $n, $k)
{
    $dp = array(array());
    $sum = 0;
    $dp = array_fill(0, $n + 1, false);
 
    // count of increasing
    // subsequences of size 1
    // ending at each arr[i]
    for ($i = 0; $i < $n; $i++)
        $dp[0][$i] = 1;
 
    // building up the matrix
    // dp[][]. Here 'l' signifies
    // the size of increasing
    // subsequence of size (l+1).
    for ($l = 1; $l < $k; $l++)
    {
 
        // for each increasing
        // subsequence of size 'l'
        // ending with element arr[i]
        for ($i = $l; $i < $n; $i++)
        {
 
            // count of increasing
            // subsequences of size 'l'
            // ending with element arr[i]
            $dp[$l][$i] = 0;
            for ($j = $l - 1; $j < $i; $j++)
            {
                if ($arr[$j] < $arr[$i])
                    $dp[$l][$i] += $dp[$l - 1][$j];
            }
        }
    }
 
    // sum up the count of increasing
    // subsequences of size 'k' ending
    // at each element arr[i]
    for ($i = $k - 1; $i < $n; $i++)
        $sum += $dp[$k - 1][$i];
 
    // required number of increasing
    // subsequences of size k
    return $sum;
}
 
// Driver Code
$arr = array(12, 8, 11, 13,
             10, 15, 14, 16, 20);
$n = sizeof($arr);
$k = 4;
 
echo "Number of Increasing ".
     "Subsequences of size ",
                 $k , " = " ,
     numOfIncSubseqOfSizeK($arr,
                           $n, $k);
 
// This code is contributed
// by akt_mit
?>

Javascript




<script>
 
// JavaScript implementation to count number of
// increasing subsequences of size k
 
// function to count number of increasing
// subsequences of size k
    function numOfIncSubseqOfSizeK(arr, n, k)
    {
        let dp = new Array(k), sum = 0;
         
        // Loop to create 2D array using 1D array
        for (let i = 0; i < dp.length; i++) {
            dp[i] = new Array(2);
        }
   
        // count of increasing subsequences of size 1
        // ending at each arr[i]
        for (let i = 0; i < n; i++) {
            dp[0][i] = 1;
        }
   
        // building up the matrix dp[][]
        // Here 'l' signifies the size of
        // increassing subsequence of size (l+1).
        for (let l = 1; l < k; l++) {
   
            // for each increasing subsequence of size 'l'
            // ending with element arr[i]
            for (let i = l; i < n; i++) {
   
                // count of increasing subsequences of size 'l'
                // ending with element arr[i]
                dp[l][i] = 0;
                for (let j = l - 1; j < i; j++) {
                    if (arr[j] < arr[i]) {
                        dp[l][i] += dp[l - 1][j];
                    }
                }
            }
        }
   
        // sum up the count of increasing subsequences of
        // size 'k' ending at each element arr[i]
        for (let i = k - 1; i < n; i++) {
            sum += dp[k - 1][i];
        }
   
        // required number of increasing
        // subsequences of size k
        return sum;
    }
 
// Driver code   
          
        let arr = [12, 8, 11, 13, 10, 15, 14, 16, 20];
        let n = arr.length;
        let k = 4;
   
        document.write("Number of Increasing Subsequences of size "
                + k + " = " + numOfIncSubseqOfSizeK(arr, n, k));
             
</script>

Output: 

Number of Increasing Subsequences of size 4 = 39

Time Complexity: O(kn2). 
Auxiliary Space: O(kn).
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :