Open In App

Count non decreasing subarrays of size N from N Natural numbers

Improve
Improve
Like Article
Like
Save
Share
Report

Given are N natural numbers, the task is to find the count of the subarrays of size N that can be formed using elements from 1 to N such that each element in the subarray is smaller than or equal to the elements to its right (a[i] ? a[i+1]).
Examples: 
 

Input: N = 2 
Output:
Explanation: 
Given array of N natural numbers: {1, 2} 
Required subarrays that can be formed: [1, 1], [1, 2], [2, 2].
Input: N = 3 
Output: 10 
Explanation: 
Given array of N natural numbers: {1, 2, 3} 
Required subarrays that can be formed: [1, 1, 1], [1, 1, 2], [1, 2, 2], [2, 2, 2], [1, 1, 3], [1, 3, 3], [3, 3, 3], [2, 2, 3], [2, 3, 3], [1, 2, 3]. 
 


 


Approach: 
 

  • Since each element of the array is between 1 to N and the subarrays can have duplicate elements in non-descending order, i.e., a[0] ? a[1] ? …. ? a[N – 1].
  • The number of ways of choosing r objects with replacement from n objects is {{n+r-1}\choose{r}}   (using Combination with repetition).
  • Here r = N and n = N as we can choose from 1 to N. So the count of all the sorted array of length N with elements from 1 to N will be {{2*n-1}\choose{n}}   .
  • Now this can be further expanded with the help of Binomial Coefficients. The coefficient obtained from this will be the required subarray’s count.


Below is the implementation of above approach: 
 

C++

// C++ program to count non decreasing subarrays
// of size N from N Natural numbers
 
#include <bits/stdc++.h>
using namespace std;
 
// Returns value of Binomial Coefficient C(n, k)
int binomialCoeff(int n, int k)
{
    int C[k + 1];
    memset(C, 0, sizeof(C));
 
    // Since nC0 is 1
    C[0] = 1;
 
    for (int i = 1; i <= n; i++) {
 
        // Compute next row of pascal triangle using
        // the previous row
        for (int j = min(i, k); j > 0; j--)
            C[j] = C[j] + C[j - 1];
    }
    return C[k];
}
 
// Function to find the count of required subarrays
int count_of_subarrays(int N)
{
 
    // The required count is the binomial coefficient
    // as explained in the approach above
    int count = binomialCoeff(2 * N - 1, N);
 
    return count;
}
 
// Driver Function
int main()
{
 
    int N = 3;
 
    cout << count_of_subarrays(N) << "\n";
}

                    

Java

// Java program to count non decreasing subarrays
// of size N from N Natural numbers
class GFG
{
 
// Returns value of Binomial Coefficient C(n, k)
static int binomialCoeff(int n, int k)
{
    int []C = new int[k + 1];
 
    // Since nC0 is 1
    C[0] = 1;
 
    for (int i = 1; i <= n; i++)
    {
 
        // Compute next row of pascal triangle using
        // the previous row
        for (int j = Math.min(i, k); j > 0; j--)
            C[j] = C[j] + C[j - 1];
    }
    return C[k];
}
 
// Function to find the count of required subarrays
static int count_of_subarrays(int N)
{
 
    // The required count is the binomial coefficient
    // as explained in the approach above
    int count = binomialCoeff(2 * N - 1, N);
 
    return count;
}
 
// Driver Function
public static void main(String[] args)
{
    int N = 3;
    System.out.print(count_of_subarrays(N)+ "\n");
}
}
 
// This code is contributed by 29AjayKumar

                    

Python3

# Python3 program to count non decreasing subarrays
# of size N from N Natural numbers
 
# Returns value of Binomial Coefficient C(n, k)
def binomialCoeff(n, k) :
 
    C = [0] * (k + 1);
 
    # Since nC0 is 1
    C[0] = 1;
 
    for i in range(1, n + 1) :
 
        # Compute next row of pascal triangle using
        # the previous row
        for j in range(min(i, k), 0, -1) :
            C[j] = C[j] + C[j - 1];
     
    return C[k];
 
# Function to find the count of required subarrays
def count_of_subarrays(N) :
 
    # The required count is the binomial coefficient
    # as explained in the approach above
    count = binomialCoeff(2 * N - 1, N);
 
    return count;
 
# Driver Function
if __name__ == "__main__" :
     
    N = 3;
 
    print(count_of_subarrays(N)) ;
 
# This code is contributed by AnkitRai01

                    

C#

// C# program to count non decreasing subarrays
// of size N from N Natural numbers
using System;
 
class GFG
{
 
    // Returns value of Binomial Coefficient C(n, k)
    static int binomialCoeff(int n, int k)
    {
        int []C = new int[k + 1];
     
        // Since nC0 is 1
        C[0] = 1;
     
        for (int i = 1; i <= n; i++)
        {
     
            // Compute next row of pascal triangle using
            // the previous row
            for (int j = Math.Min(i, k); j > 0; j--)
                C[j] = C[j] + C[j - 1];
        }
        return C[k];
    }
     
    // Function to find the count of required subarrays
    static int count_of_subarrays(int N)
    {
     
        // The required count is the binomial coefficient
        // as explained in the approach above
        int count = binomialCoeff(2 * N - 1, N);
     
        return count;
    }
     
    // Driver Function
    public static void Main()
    {
        int N = 3;
        Console.WriteLine(count_of_subarrays(N));
    }
}
 
// This code is contributed by AnkitRai01

                    

Javascript

<script>
 
// Javascript program to count non decreasing subarrays
// of size N from N Natural numbers
 
// Returns value of Binomial Coefficient C(n, k)
function binomialCoeff(n, k)
{
    var C = Array(k+1).fill(0);
 
    // Since nC0 is 1
    C[0] = 1;
 
    for (var i = 1; i <= n; i++) {
 
        // Compute next row of pascal triangle using
        // the previous row
        for (var j = Math.min(i, k); j > 0; j--)
            C[j] = C[j] + C[j - 1];
    }
    return C[k];
}
 
// Function to find the count of required subarrays
function count_of_subarrays(N)
{
 
    // The required count is the binomial coefficient
    // as explained in the approach above
    var count = binomialCoeff(2 * N - 1, N);
 
    return count;
}
 
// Driver Function
var N = 3;
document.write( count_of_subarrays(N));
 
// This code is contributed by itsok.
</script>

                    

Output: 
10

 

Time Complexity: O(N2)

Auxiliary Space: O(N)



Last Updated : 03 Feb, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads