Skip to content
Related Articles

Related Articles

Count non decreasing subarrays of size N from N Natural numbers
  • Last Updated : 11 Feb, 2020

Given are N natural numbers, the task is to find the count of the subarrays of size N that can be formed using elements from 1 to N such that each element in the subarray is smaller than or equal to the elements to its right (a[i] ≤ a[i+1]).

Examples:

Input: N = 2
Output: 3
Explanation:
Given array of N natural numbers: {1, 2}
Required subarrays that can be formed: [1, 1], [1, 2], [2, 2].

Input: N = 3
Output: 10
Explanation:
Given array of N natural numbers: {1, 2, 3}
Required subarrays that can be formed: [1, 1, 1], [1, 1, 2], [1, 2, 2], [2, 2, 2], [1, 1, 3], [1, 3, 3], [3, 3, 3], [2, 2, 3], [2, 3, 3], [1, 2, 3].

Approach:



  • Since each element of the array is between 1 to N and the subarrays can have duplicate elements in non-descending order, i.e., a[0] ≤ a[1] ≤ …. ≤ a[N – 1].
  • The number of ways of choosing r objects with replacement from n objects is {{n+r-1}\choose{r}} (using Combination with repetition).
  • Here r = N and n = N as we can choose from 1 to N. So the count of all the sorted array of length N with elements from 1 to N will be {{2*n-1}\choose{n}}.
  • Now this can be further expanded with the help of Binomial Coefficients. The coefficient obtained from this will be the required subarray’s count.

Below is the implementation of above approach:

C++




// C++ program to count non decreasing subarrays
// of size N from N Natural numbers
  
#include <bits/stdc++.h>
using namespace std;
  
// Returns value of Binomial Coefficient C(n, k)
int binomialCoeff(int n, int k)
{
    int C[k + 1];
    memset(C, 0, sizeof(C));
  
    // Since nC0 is 1
    C[0] = 1;
  
    for (int i = 1; i <= n; i++) {
  
        // Compute next row of pascal triangle using
        // the previous row
        for (int j = min(i, k); j > 0; j--)
            C[j] = C[j] + C[j - 1];
    }
    return C[k];
}
  
// Function to find the count of required subarrays
int count_of_subarrays(int N)
{
  
    // The required count is the binomial coefficient
    // as explained in the approach above
    int count = binomialCoeff(2 * N - 1, N);
  
    return count;
}
  
// Driver Function
int main()
{
  
    int N = 3;
  
    cout << count_of_subarrays(N) << "\n";
}

Java




// Java program to count non decreasing subarrays
// of size N from N Natural numbers
class GFG
{
  
// Returns value of Binomial Coefficient C(n, k)
static int binomialCoeff(int n, int k)
{
    int []C = new int[k + 1];
  
    // Since nC0 is 1
    C[0] = 1;
  
    for (int i = 1; i <= n; i++)
    {
  
        // Compute next row of pascal triangle using
        // the previous row
        for (int j = Math.min(i, k); j > 0; j--)
            C[j] = C[j] + C[j - 1];
    }
    return C[k];
}
  
// Function to find the count of required subarrays
static int count_of_subarrays(int N)
{
  
    // The required count is the binomial coefficient
    // as explained in the approach above
    int count = binomialCoeff(2 * N - 1, N);
  
    return count;
}
  
// Driver Function
public static void main(String[] args)
{
    int N = 3;
    System.out.print(count_of_subarrays(N)+ "\n");
}
}
  
// This code is contributed by 29AjayKumar

Python3




# Python3 program to count non decreasing subarrays 
# of size N from N Natural numbers 
  
# Returns value of Binomial Coefficient C(n, k) 
def binomialCoeff(n, k) : 
  
    C = [0] * (k + 1);
  
    # Since nC0 is 1 
    C[0] = 1
  
    for i in range(1, n + 1) :
  
        # Compute next row of pascal triangle using 
        # the previous row 
        for j in range(min(i, k), 0, -1) : 
            C[j] = C[j] + C[j - 1]; 
      
    return C[k]; 
  
# Function to find the count of required subarrays 
def count_of_subarrays(N) : 
  
    # The required count is the binomial coefficient 
    # as explained in the approach above 
    count = binomialCoeff(2 * N - 1, N); 
  
    return count; 
  
# Driver Function 
if __name__ == "__main__"
      
    N = 3
  
    print(count_of_subarrays(N)) ; 
  
# This code is contributed by AnkitRai01

C#




// C# program to count non decreasing subarrays
// of size N from N Natural numbers
using System;
  
class GFG
{
  
    // Returns value of Binomial Coefficient C(n, k)
    static int binomialCoeff(int n, int k)
    {
        int []C = new int[k + 1];
      
        // Since nC0 is 1
        C[0] = 1;
      
        for (int i = 1; i <= n; i++)
        {
      
            // Compute next row of pascal triangle using
            // the previous row
            for (int j = Math.Min(i, k); j > 0; j--)
                C[j] = C[j] + C[j - 1];
        }
        return C[k];
    }
      
    // Function to find the count of required subarrays
    static int count_of_subarrays(int N)
    {
      
        // The required count is the binomial coefficient
        // as explained in the approach above
        int count = binomialCoeff(2 * N - 1, N);
      
        return count;
    }
      
    // Driver Function
    public static void Main()
    {
        int N = 3;
        Console.WriteLine(count_of_subarrays(N));
    }
}
  
// This code is contributed by AnkitRai01
Output:
10

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :