Count nodes with two children at level L in a Binary Tree

Given a Binary tree, the task is to count the number of nodes with two children at a given level L.
Examples: 

Input: 
          1
         /  \
        2    3
       / \    \
      4   5    6
         /    / \
        7    8   9
L = 2
Output: 1

Input:
          20
         /   \
        8     22
       / \    / \
      5   3  4   25
     / \  / \     \
    1  10 2  14    6
L = 3
Output: 2

Approach: Initialize a variable count = 0. Recursively traverse the tree in a level order manner. If the current level is same as the given level, then check whether the current node has two children. If it has two children then increment the variable count.

Below is the implementation of the above approach: 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find number of full nodes
// at a given level
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node
struct Node {
    int data;
    struct Node *left, *right;
};
 
// Utility function to allocate memory for a new node
struct Node* newNode(int data)
{
    struct Node* node = new (struct Node);
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
 
// Function that returns the height of binary tree
int height(struct Node* root)
{
    if (root == NULL)
        return 0;
 
    int lheight = height(root->left);
    int rheight = height(root->right);
 
    return max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
void LevelOrder(struct Node* root, int level, int& count)
{
    if (root == NULL)
        return;
 
    if (level == 1 && root->left && root->right)
        count++;
 
    else if (level > 1) {
        LevelOrder(root->left, level - 1, count);
        LevelOrder(root->right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
int CountFullNodes(struct Node* root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    int count = 0;
 
    LevelOrder(root, L, count);
 
    return count;
}
 
// Driver code
int main()
{
    struct Node* root = newNode(7);
    root->left = newNode(5);
    root->right = newNode(6);
    root->left->left = newNode(8);
    root->left->right = newNode(1);
    root->left->left->left = newNode(2);
    root->left->left->right = newNode(11);
    root->right->left = newNode(3);
    root->right->right = newNode(9);
    root->right->right->right = newNode(13);
    root->right->right->left = newNode(10);
    root->right->right->right->left = newNode(4);
    root->right->right->right->right = newNode(12);
 
    int L = 3;
 
    cout << CountFullNodes(root, L);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find number of full nodes
// at a given level
class GFG
{
 
//INT class
static class INT
{
    int a;
}
 
// A binary tree node
static class Node
{
    int data;
    Node left, right;
};
 
// Utility function to allocate memory for a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function that returns the height of binary tree
static int height(Node root)
{
    if (root == null)
        return 0;
 
    int lheight = height(root.left);
    int rheight = height(root.right);
 
    return Math.max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
static void LevelOrder( Node root, int level, INT count)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left!=null && root.right!=null)
        count.a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1, count);
        LevelOrder(root.right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
static int CountFullNodes( Node root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    INT count =new INT();
    count.a = 0;
 
    LevelOrder(root, L, count);
 
    return count.a;
}
 
// Driver code
public static void main(String args[])
{
    Node root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
 
    int L = 3;
 
    System.out.print( CountFullNodes(root, L));
 
}
}
 
// This code is contributed by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find number of
# full nodes at a given level
 
# INT class
class INT:
  
    def __init__(self):
         
        self.a = 0
 
# A binary tree node
class Node:
     
    def __init__(self, data):
         
        self.left = None
        self.right = None
        self.data = data
  
# Utility function to allocate
# memory for a new node
def newNode(data):
 
    node = Node(data)
     
    return node
 
# Function that returns the
# height of binary tree
def height(root):
 
    if (root == None):
        return 0;
  
    lheight = height(root.left);
    rheight = height(root.right);
  
    return max(lheight, rheight) + 1;
 
# Level Order traversal to find the
# number of nodes having two children
def LevelOrder(root, level, count):
 
    if (root == None):
        return;
  
    if (level == 1 and
        root.left != None and
       root.right != None):
        count.a += 1
  
    elif (level > 1):
        LevelOrder(root.left,
                   level - 1, count);
        LevelOrder(root.right,
                   level - 1, count);
  
# Returns the number of full nodes
# at a given level
def CountFullNodes(root, L):
 
    # Stores height of tree
    h = height(root);
  
    # Stores count of nodes at a
    # given level that have two children
    count = INT()
  
    LevelOrder(root, L, count);
  
    return count.a
 
# Driver code   
if __name__=="__main__":
     
    root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
  
    L = 3;
  
    print(CountFullNodes(root, L))
     
# This code is contributed by rutvik_56

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find number of full nodes
// at a given level
using System;
 
class GFG
{
 
// INT class
public class INT
{
    public int a;
}
 
// A binary tree node
public class Node
{
    public int data;
    public Node left, right;
};
 
// Utility function to allocate memory for a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function that returns the height of binary tree
static int height(Node root)
{
    if (root == null)
        return 0;
 
    int lheight = height(root.left);
    int rheight = height(root.right);
 
    return Math.Max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
static void LevelOrder( Node root, int level, INT count)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left!=null && root.right!=null)
        count.a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1, count);
        LevelOrder(root.right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
static int CountFullNodes( Node root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    INT count =new INT();
    count.a = 0;
 
    LevelOrder(root, L, count);
 
    return count.a;
}
 
// Driver code
public static void Main(String []args)
{
    Node root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
 
    int L = 3;
 
    Console.Write( CountFullNodes(root, L));
 
}
}
 
// This code has been contributed by 29AjayKumar

chevron_right


Output: 

2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.