# Count natural numbers whose all permutation are greater than that number

There are some natural number whose all permutation is greater than or equal to that number eg. 123, whose all the permutation (123, 231, 321) are greater than or equal to 123.

Given a natural number n, the task is to count all such number from 1 to n.

Examples:

```Input : n = 15.
Output : 14
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12,
13, 14, 15 are the numbers whose all
permutation is greater than the number
itself. So, output 14.

Input : n = 100.
Output : 54
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A simple solution is to run a loop from 1 to n and for every number check if its digits are in non-decreasing order or not.

An efficient solution is based on below observations.

Observation 1: From 1 to 9, all number have this property. So, for n <= 9, output n.
Observation 2: The number whose all permutation is greater than or equal to that number have all their digits in increasing order.

The idea is to push all the number from 1 to 9. Now, pop the top element, say topel and try to make number whose digits are in increasing order and the first digit is topel. To make such numbers, the second digit can be from topel%10 to 9. If this number is less than n, increment the count and push the number in the stack, else ignore.

Below is the implementation of this approach:

## C++

 `// C++ program to count the number less than N, ` `// whose all permutation is greater than or equal to the number. ` `#include ` `using` `namespace` `std; ` ` `  `// Return the count of the number having all ` `// permutation greater than or equal to the number. ` `int` `countNumber(``int` `n) ` `{ ` `    ``int` `result = 0; ` ` `  `    ``// Pushing 1 to 9 because all number from 1 ` `    ``// to 9 have this property. ` `    ``for` `(``int` `i = 1; i <= 9; i++) ` `    ``{ ` `        ``stack<``int``> s; ` `        ``if` `(i <= n) ` `        ``{ ` `            ``s.push(i); ` `            ``result++; ` `        ``} ` ` `  `        ``// take a number from stack and add ` `        ``// a digit smaller than last digit ` `        ``// of it. ` `        ``while` `(!s.empty()) ` `        ``{ ` `            ``int` `tp = s.top(); ` `            ``s.pop(); ` `            ``for` `(``int` `j = tp%10; j <= 9; j++) ` `            ``{ ` `                ``int` `x = tp*10 + j; ` `                ``if` `(x <= n) ` `                ``{ ` `                    ``s.push(x); ` `                    ``result++; ` `                ``} ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``return` `result; ` `} ` ` `  `// Driven Program ` `int` `main() ` `{ ` `    ``int` `n = 15; ` `    ``cout << countNumber(n) << endl; ` `    ``return` `0; ` `} `

## Java

 `import` `java.util.Stack; ` ` `  `// Java program to count the number less than N, ` `// whose all permutation is greater than or equal to the number. ` `class` `GFG { ` `// Return the count of the number having all ` `// permutation greater than or equal to the number. ` ` `  `    ``static` `int` `countNumber(``int` `n) { ` `        ``int` `result = ``0``; ` ` `  `        ``// Pushing 1 to 9 because all number from 1 ` `        ``// to 9 have this property. ` `        ``for` `(``int` `i = ``1``; i <= ``9``; i++) { ` `            ``Stack s = ``new` `Stack<>(); ` `            ``if` `(i <= n) { ` `                ``s.push(i); ` `                ``result++; ` `            ``} ` ` `  `            ``// take a number from stack and add ` `            ``// a digit smaller than last digit ` `            ``// of it. ` `            ``while` `(!s.empty()) { ` `                ``int` `tp = s.peek(); ` `                ``s.pop(); ` `                ``for` `(``int` `j = tp % ``10``; j <= ``9``; j++) { ` `                    ``int` `x = tp * ``10` `+ j; ` `                    ``if` `(x <= n) { ` `                        ``s.push(x); ` `                        ``result++; ` `                    ``} ` `                ``} ` `            ``} ` `        ``} ` ` `  `        ``return` `result; ` `    ``} ` ` `  `// Driven Program ` `    ``public` `static` `void` `main(String[] args) { ` `        ``int` `n = ``15``; ` `        ``System.out.println(countNumber(n)); ` ` `  `    ``} ` `} ` ` `  `//this code contributed by Rajput-Ji `

## Python3

 `# Python3 program to count the number less  ` `# than N, whose all permutation is greater  ` `# than or equal to the number.  ` ` `  `# Return the count of the number having  ` `# all permutation greater than or equal  ` `# to the number.  ` `def` `countNumber(n): ` `    ``result ``=` `0` ` `  `    ``# Pushing 1 to 9 because all number  ` `    ``# from 1 to 9 have this property. ` `    ``for` `i ``in` `range``(``1``, ``10``): ` `        ``s ``=` `[]  ` `        ``if` `(i <``=` `n): ` `            ``s.append(i)  ` `            ``result ``+``=` `1` ` `  `        ``# take a number from stack and add  ` `        ``# a digit smaller than last digit  ` `        ``# of it.  ` `        ``while` `len``(s) !``=` `0``: ` `            ``tp ``=` `s[``-``1``]  ` `            ``s.pop() ` `            ``for` `j ``in` `range``(tp ``%` `10``, ``10``): ` `                ``x ``=` `tp ``*` `10` `+` `j  ` `                ``if` `(x <``=` `n): ` `                    ``s.append(x)  ` `                    ``result ``+``=` `1` ` `  `    ``return` `result ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` ` `  `    ``n ``=` `15` `    ``print``(countNumber(n)) ` ` `  `# This code is contributed by PranchalK `

## C#

 `// C# program to count the number less than N,  ` `// whose all permutation is greater than  ` `// or equal to the number. ` `using` `System; ` `using` `System.Collections.Generic;  ` ` `  `class` `GFG  ` `{ ` ` `  `// Return the count of the number  ` `// having all permutation greater than ` `// or equal to the number.  ` `static` `int` `countNumber(``int` `n) ` `{  ` `    ``int` `result = 0;  ` ` `  `    ``// Pushing 1 to 9 because all number from 1  ` `    ``// to 9 have this property.  ` `    ``for` `(``int` `i = 1; i <= 9; i++) ` `    ``{  ` `        ``Stack<``int``> s = ``new` `Stack<``int``>();  ` `        ``if` `(i <= n) ` `        ``{  ` `            ``s.Push(i);  ` `            ``result++;  ` `        ``}  ` ` `  `        ``// take a number from stack and add  ` `        ``// a digit smaller than last digit  ` `        ``// of it.  ` `        ``while` `(s.Count != 0)  ` `        ``{  ` `            ``int` `tp = s.Peek();  ` `            ``s.Pop();  ` `            ``for` `(``int` `j = tp % 10; j <= 9; j++) ` `            ``{  ` `                ``int` `x = tp * 10 + j;  ` `                ``if` `(x <= n)  ` `                ``{  ` `                    ``s.Push(x);  ` `                    ``result++;  ` `                ``}  ` `            ``}  ` `        ``}  ` `    ``}  ` ` `  `    ``return` `result;  ` `}  ` ` `  `// Driver Code ` `public` `static` `void` `Main(String[] args)  ` `{  ` `    ``int` `n = 15;  ` `    ``Console.WriteLine(countNumber(n));  ` `}  ` `}  ` ` `  `// This code is contributed by Rajput-Ji `

Output:

```14
```

Time Complexity : O(x) where x is number of elements printed in output.

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.