Count N-digits numbers made up of even and prime digits at odd and even positions respectively
Given a positive integer N, the task is to find the number of integers of N digits having even digits at odd indices and prime digits at even indices.
Examples:
Input: N = 2
Output: 20
Explanation:
Following are the possible number of 2-digits satisfying the given criteria {20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 50, 52, 54, 56, 58, 70, 72, 74, 76, 78}. Therefore, the count of such number is 20.Input: N = 5
Output: 1600
Approach: The given problem can be solved using the concept of Permutations and Combinations by observing the fact that there are only 4 choices for the even positions as [2, 3, 5, 7] and 5 choices for the odd positions as [0, 2, 4, 6, 8]. Therefore, the count of N-digits numbers satisfying the given criteria is given by:
total count = 4P5Q, where P and Q is the number of even and odd positions respectively.
Efficient Approach:
- Define a variable m with value 1000000007.
- Define a function named “power” which will accept two integer parameters named “x” and “y“. This function will return the value of x^y.
Inside the function power, initialize a variable res with value 1.- Run a loop until y is greater than 0. Inside the loop:
a. If the last bit of y is 1 (i.e., if y is odd), then multiply res with x and take modulo with m.
b. Divide y by 2.
c. Multiply x by x and take modulo with m. - Return the value of res.
- Run a loop until y is greater than 0. Inside the loop:
- Define another function named “countNDigitNumber” which will accept an integer parameter named “N“. This function will return the number of N-digit integers satisfying the given criteria.
- Inside the function countNDigitNumber, define two integer variables named “ne” and “no“. ne will hold the count of even positions and no will hold the count of odd positions. Initialize ne with N/2 + N%2 and no with floor(N/2).
- Return the product of power(4, ne) and power(5, no) modulo m.
- Inside the main function:
a. Define an integer variable N and initialize it with 5.
b. Call the function countNDigitNumber with parameter N and print the result modulo m.
Below is the implementation of the above approach:
C++
// C++ program for the above approache #include<bits/stdc++.h> using namespace std; int m = 1000000007; // Function to find the value of x ^ y int power( int x, int y) { // Stores the value of x ^ y int res = 1; // Iterate until y is positive while (y > 0) { // If y is odd if ((y & 1) != 0) res = (res * x) % m; // Divide y by 2 y = y >> 1; x = (x * x) % m; } // Return the value of x ^ y return res; } // Function to find the number of N-digit // integers satisfying the given criteria int countNDigitNumber( int N) { // Count of even positions int ne = N / 2 + N % 2; // Count of odd positions int no = floor (N / 2); // Return the resultant count return power(4, ne) * power(5, no); } // Driver Code int main() { int N = 5; cout << countNDigitNumber(N) % m << endl; } // This code is contributed by SURENDRA_GANGWAR |
Java
// Java program for the above approach import java.io.*; class GFG { static int m = 1000000007 ; // Function to find the value of x ^ y static int power( int x, int y) { // Stores the value of x ^ y int res = 1 ; // Iterate until y is positive while (y > 0 ) { // If y is odd if ((y & 1 ) != 0 ) res = (res * x) % m; // Divide y by 2 y = y >> 1 ; x = (x * x) % m; } // Return the value of x ^ y return res; } // Function to find the number of N-digit // integers satisfying the given criteria static int countNDigitNumber( int N) { // Count of even positions int ne = N / 2 + N % 2 ; // Count of odd positions int no = ( int )Math.floor(N / 2 ); // Return the resultant count return power( 4 , ne) * power( 5 , no); } // Driver Code public static void main(String[] args) { int N = 5 ; System.out.println(countNDigitNumber(N) % m); } } // This code is contributed by sanjoy_62. |
Python3
# Python program for the above approach import math m = 10 * * 9 + 7 # Function to find the value of x ^ y def power(x, y): # Stores the value of x ^ y res = 1 # Iterate until y is positive while y > 0 : # If y is odd if (y & 1 ) ! = 0 : res = (res * x) % m # Divide y by 2 y = y >> 1 x = (x * x) % m # Return the value of x ^ y return res # Function to find the number of N-digit # integers satisfying the given criteria def countNDigitNumber(n: int ) - > None : # Count of even positions ne = N / / 2 + N % 2 # Count of odd positions no = N / / 2 # Return the resultant count return power( 4 , ne) * power( 5 , no) # Driver Code if __name__ = = '__main__' : N = 5 print (countNDigitNumber(N) % m) |
C#
// C# program for the above approach using System; class GFG{ static int m = 1000000007; // Function to find the value of x ^ y static int power( int x, int y) { // Stores the value of x ^ y int res = 1; // Iterate until y is positive while (y > 0) { // If y is odd if ((y & 1) != 0) res = (res * x) % m; // Divide y by 2 y = y >> 1; x = (x * x) % m; } // Return the value of x ^ y return res; } // Function to find the number of N-digit // integers satisfying the given criteria static int countNDigitNumber( int N) { // Count of even positions int ne = N / 2 + N % 2; // Count of odd positions int no = ( int )Math.Floor(( double )N / 2); // Return the resultant count return power(4, ne) * power(5, no); } // Driver Code public static void Main() { int N = 5; Console.Write(countNDigitNumber(N) % m); } } // This code is contributed by splevel62. |
Javascript
<script> // JavaScript program for the above approache var m = 10 ** 9 + 7 // Function to find the value of x ^ y function power(x, y) { // Stores the value of x ^ y var res = 1 // Iterate until y is positive while (y > 0) { // If y is odd if ((y & 1) != 0) res = (res * x) % m // Divide y by 2 y = y >> 1 x = (x * x) % m } // Return the value of x ^ y return res } // Function to find the number of N-digit // integers satisfying the given criteria function countNDigitNumber(N) { // Count of even positions var ne = Math.floor(N / 2) + N % 2 // Count of odd positions var no = Math.floor(N / 2) // Return the resultant count return power(4, ne) * power(5, no) } // Driver Code let N = 5 document.write(countNDigitNumber(N) % m); // This code is contributed by Potta Lokesh </script> |
1600
Time Complexity: O(log N)
Auxiliary Space: O(1)
Please Login to comment...