Given number of digit n and a number, the task is to count all the numbers which are divisible by that number and having n digit.**Examples :**

Input : n = 2, number = 7 Output : 9 There are nine n digit numbers that are divisible by 7. Numbers are 14, 21, 28, 35, 42, 49, .... 70. Input : n = 3, number = 7 Output : 128 Input : n = 4, number = 4 Output : 2250

**Native Approach:** Traverse through all n digit numbers. For every number check for divisibility,

## C++

`// Simple CPP program to count n digit` `// divisible numbers.` `#include <cmath>` `#include <iostream>` `using` `namespace` `std;` `// Returns count of n digit numbers` `// divisible by 'number'` `int` `numberofterm(` `int` `n, ` `int` `number)` `{` ` ` `// compute the first and last term` ` ` `int` `firstnum = ` `pow` `(10, n - 1);` ` ` `int` `lastnum = ` `pow` `(10, n);` ` ` `// count total number of which having` ` ` `// n digit and divisible by number` ` ` `int` `count = 0;` ` ` `for` `(` `int` `i = firstnum; i < lastnum; i++)` ` ` `if` `(i % number == 0)` ` ` `count++;` ` ` `return` `count;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 3, num = 7;` ` ` `cout << numberofterm(n, num) << ` `"\n"` `;` ` ` `return` `0;` `}` |

## Java

`// Simple Java program to count n digit` `// divisible numbers.` `import` `java.io.*;` `class` `GFG {` ` ` ` ` `// Returns count of n digit numbers` ` ` `// divisible by 'number'` ` ` `static` `int` `numberofterm(` `int` `n, ` `int` `number)` ` ` `{` ` ` `// compute the first and last term` ` ` `int` `firstnum = (` `int` `)Math.pow(` `10` `, n - ` `1` `);` ` ` `int` `lastnum = (` `int` `)Math.pow(` `10` `, n);` ` ` ` ` `// count total number of which having` ` ` `// n digit and divisible by number` ` ` `int` `count = ` `0` `;` ` ` `for` `(` `int` `i = firstnum; i < lastnum; i++)` ` ` `if` `(i % number == ` `0` `)` ` ` `count++;` ` ` `return` `count;` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `main (String[] args)` ` ` `{` ` ` `int` `n = ` `3` `, num = ` `7` `;` ` ` `System.out.println(numberofterm(n, num));` ` ` `}` `}` `// This code is contributed by Ajit.` |

## Python3

`# Simple Python 3 program to count n digit` `# divisible numbers` `import` `math` `# Returns count of n digit` `# numbers divisible by number` `def` `numberofterm(n, number):` ` ` `# compute the first and last term` ` ` `firstnum ` `=` `math.` `pow` `(` `10` `, n ` `-` `1` `)` ` ` `lastnum ` `=` `math.` `pow` `(` `10` `, n)` ` ` `# count total number of which having` ` ` `# n digit and divisible by number` ` ` `count ` `=` `0` ` ` `for` `i ` `in` `range` `(` `int` `(firstnum), ` `int` `(lastnum)):` ` ` `if` `(i ` `%` `number ` `=` `=` `0` `):` ` ` `count ` `+` `=` `1` ` ` `return` `count` `# Driver code` `n ` `=` `3` `num ` `=` `7` `print` `(numberofterm(n, num))` `# This article is contributed` `# by Smitha Dinesh Semwal` |

## C#

`// Simple C# program to count n digit` `// divisible numbers.` `using` `System;` `class` `GFG` `{` ` ` ` ` `// Returns count of n digit numbers` ` ` `// divisible by 'number'` ` ` `static` `int` `numberofterm(` `int` `n, ` `int` `number)` ` ` `{` ` ` `// compute the first and last term` ` ` `int` `firstnum = (` `int` `)Math.Pow(10, n - 1);` ` ` `int` `lastnum = (` `int` `)Math.Pow(10, n);` ` ` ` ` `// count total number of which having` ` ` `// n digit and divisible by number` ` ` `int` `count = 0;` ` ` `for` `(` `int` `i = firstnum; i < lastnum; i++)` ` ` `if` `(i % number == 0)` ` ` `count++;` ` ` `return` `count;` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main ()` ` ` `{` ` ` `int` `n = 3, num = 7;` ` ` `Console.Write(numberofterm(n, num));` ` ` `}` `}` `// This code is contributed by nitin mittal` |

## PHP

`<?php` `// Simple php program to count n digit` `// divisible numbers.` `// Returns count of n digit numbers` `// divisible by 'number'` `function` `numberofterm(` `$n` `, ` `$number` `)` `{` ` ` ` ` `// compute the first and last term` ` ` `$firstnum` `= pow(10, ` `$n` `- 1);` ` ` `$lastnum` `= pow(10, ` `$n` `);` ` ` `// count total number of which having` ` ` `// n digit and divisible by number` ` ` `$count` `= 0;` ` ` `for` `(` `$i` `= ` `$firstnum` `; ` `$i` `< ` `$lastnum` `; ` `$i` `++)` ` ` `if` `(` `$i` `% ` `$number` `== 0)` ` ` `$count` `++;` ` ` `return` `$count` `;` `}` ` ` `// Driver code` ` ` `$n` `= 3;` ` ` `$num` `= 7;` ` ` `echo` `numberofterm(` `$n` `, ` `$num` `);` ` ` `// This code is contributed by mits` `?>` |

## Javascript

`<script>` `// JavaScript program to count n digit` `// divisible numbers.` `// Returns count of n digit numbers` ` ` `// divisible by 'number'` ` ` `function` `numberofterm(n, number)` ` ` `{` ` ` `// compute the first and last term` ` ` `let firstnum = Math.pow(10, n - 1);` ` ` `let lastnum = Math.pow(10, n);` ` ` ` ` `// count total number of which having` ` ` `// n digit and divisible by number` ` ` `let count = 0;` ` ` `for` `(let i = firstnum; i < lastnum; i++)` ` ` `if` `(i % number == 0)` ` ` `count++;` ` ` `return` `count;` ` ` `}` `// Driver Code` ` ` `let n = 3, num = 7;` ` ` `document.write(numberofterm(n, num));` `// This code is contributed by code_hunt.` `</script>` |

**Output:**

128

**Efficient Approach **: Find the first and last terms divisible, then apply the below formula

Count of divisible = (lastnumber – firstnumber)/number + 1

## C++

`// Efficient CPP program to count n digit` `// divisible numbers.` `#include <cmath>` `#include <iostream>` `using` `namespace` `std;` `// find the number of term` `int` `numberofterm(` `int` `digit, ` `int` `number)` `{` ` ` `// compute the first and last term` ` ` `int` `firstnum = ` `pow` `(10, digit - 1);` ` ` `int` `lastnum = ` `pow` `(10, digit);` ` ` `// first number which is divisible by given number` ` ` `firstnum = (firstnum - firstnum % number) + number;` ` ` `// last number which is divisible by given number` ` ` `lastnum = (lastnum - lastnum % number);` ` ` `// Apply the formula here` ` ` `return` `((lastnum - firstnum) / number + 1);` `}` `int` `main()` `{` ` ` `int` `n = 3;` ` ` `int` `number = 7;` ` ` `cout << numberofterm(n, number) << ` `"\n"` `;` ` ` `return` `0;` `}` |

## Java

`// Efficient Java program to count n digit` `// divisible numbers.` `import` `java.io.*;` `class` `GFG {` ` ` ` ` `// find the number of term` ` ` `static` `int` `numberofterm(` `int` `digit, ` `int` `number)` ` ` `{` ` ` `// compute the first and last term` ` ` `int` `firstnum = (` `int` `)Math.pow(` `10` `, digit - ` `1` `);` ` ` `int` `lastnum = (` `int` `)Math.pow(` `10` `, digit);` ` ` ` ` `// first number which is divisible by given number` ` ` `firstnum = (firstnum - firstnum % number) + number;` ` ` ` ` `// last number which is divisible by given number` ` ` `lastnum = (lastnum - lastnum % number);` ` ` ` ` `// Apply the formula here` ` ` `return` `((lastnum - firstnum) / number + ` `1` `);` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `main (String[] args)` ` ` `{` ` ` `int` `n = ` `3` `;` ` ` `int` `number = ` `7` `;` ` ` `System.out.println(numberofterm(n, number));` ` ` `}` `}` `// This code is contributed by Ajit.` |

## Python3

`# Efficient Python program to ` `# count n digit divisible numbers.` `# Find the number of term` `def` `numberofterm(digit, number):` ` ` ` ` `# compute the first and last term` ` ` `firstnum ` `=` `pow` `(` `10` `, digit ` `-` `1` `)` ` ` `lastnum ` `=` `pow` `(` `10` `, digit)` ` ` `# First number which is divisible by given number` ` ` `firstnum ` `=` `(firstnum ` `-` `firstnum ` `%` `number) ` `+` `number` ` ` `# last number which is divisible by given number` ` ` `lastnum ` `=` `(lastnum ` `-` `lastnum ` `%` `number)` ` ` `# Apply the formula here` ` ` `return` `((lastnum ` `-` `firstnum) ` `/` `/` `number ` `+` `1` `);` `# Driver code` `n ` `=` `3` `; number ` `=` `7` `print` `(numberofterm(n, number))` `# This code is contributed by Ajit.` |

## C#

`// Efficient C# program to count n digit` `// divisible numbers.` `using` `System;` `class` `GFG {` ` ` ` ` `// find the number of term` ` ` `static` `int` `numberofterm(` `int` `digit,` ` ` `int` `number)` ` ` `{` ` ` ` ` `// compute the first and` ` ` `// last term` ` ` `int` `firstnum = (` `int` `)Math.Pow(10,` ` ` `digit - 1);` ` ` ` ` `int` `lastnum = (` `int` `)Math.Pow(10,` ` ` `digit);` ` ` ` ` `// first number which is divisible` ` ` `// by given number` ` ` `firstnum = (firstnum - firstnum` ` ` `% number) + number;` ` ` ` ` `// last number which is divisible` ` ` `// by given number` ` ` `lastnum = (lastnum - lastnum` ` ` `% number);` ` ` ` ` `// Apply the formula here` ` ` `return` `((lastnum - firstnum)` ` ` `/ number + 1);` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `Main ()` ` ` `{` ` ` `int` `n = 3;` ` ` `int` `number = 7;` ` ` ` ` `Console.WriteLine(` ` ` `numberofterm(n, number));` ` ` `}` `}` `// This code is contributed by anuj_67.` |

## PHP

`<?php` `// Efficient PHP program` `// to count n digit` `// divisible numbers.` `// find the number of term` `function` `numberofterm(` `$digit` `,` ` ` `$number` `)` `{` ` ` `// compute the first` ` ` `// and last term` ` ` `$firstnum` `= pow(10, ` `$digit` `- 1);` ` ` `$lastnum` `= pow(10, ` `$digit` `);` ` ` `// first number which is` ` ` `// divisible by given number` ` ` `$firstnum` `= (` `$firstnum` `- ` `$firstnum` `%` ` ` `$number` `) + ` `$number` `;` ` ` `// last number which is` ` ` `// divisible by given number` ` ` `$lastnum` `= (` `$lastnum` `- ` `$lastnum` `%` ` ` `$number` `);` ` ` `// Apply the formula here` ` ` `return` `((` `$lastnum` `- ` `$firstnum` `) /` ` ` `$number` `+ 1);` `}` `// Driver Code` `$n` `= 3;` `$number` `= 7;` `echo` `(numberofterm(` `$n` `, ` `$number` `));` `// This code is contributed by` `// Manish Shaw(manishshaw1)` `?>` |

**Output:**

128

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**