Count minimum moves required to convert A to B

Given two integers A and B, convert A to B by performing one of the following operations any number of times:

The task is to find the minimum number of operations required to convert A to B using the above operations.

Examples:

Input: A = 13, B = 42
Output: 3
Explanation:
The following sequence of moves can be performed: 13 → 23 → 32 → 42(add 10, add 9, add 10).

Input: A = 18, B = 4
Output: 2
Explanation:
The following sequence of moves can be performed: 18 → 10 → 4 (subtract 8, subtract 6).



Approach: The idea is to simply calculate the required number of moves by dividing the absolute difference of A and B by all the numbers in the range [1…10] and adding it to the resultant variable. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum number
// of moves to obtained B from A
void convertBfromA(int a, int b)
{
    // Stores the minimum
    // number of moves
    int moves = 0;
 
    // Absolute difference
    int x = abs(a - b);
 
    // K is in range [0, 10]
    for (int i = 10; i > 0; i--) {
        moves += x / i;
        x = x % i;
    }
 
    // Print the required moves
    cout << moves << " ";
}
 
// Driver Code
int main()
{
    int A = 188, B = 4;
 
    convertBfromA(A, B);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Function to find minimum number
// of moves to obtained B from A
static void convertBfromA(int a, int b)
{
     
    // Stores the minimum
    // number of moves
    int moves = 0;
 
    // Absolute difference
    int x = Math.abs(a - b);
 
    // K is in range [0, 10]
    for(int i = 10; i > 0; i--)
    {
        moves += x / i;
        x = x % i;
    }
 
    // Print the required moves
    System.out.print(moves + " ");
}
 
// Driver Code
public static void main (String[] args)
{
    int A = 188, B = 4;
 
    convertBfromA(A, B);
}
}
 
// This code is contributed by code_hunt
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to find minimum number
# of moves to obtained B from A
def convertBfromA(a, b):
     
    # Stores the minimum
    # number of moves
    moves = 0
 
    # Absolute difference
    x = abs(a - b)
 
    # K is in range [0, 10]
    for i in range(10, 0, -1):
        moves += x // i
        x = x % i
     
    # Print the required moves
    print(moves, end = " ")
 
# Driver Code
A = 188
B = 4
 
convertBfromA(A, B)
 
# This code is contributed by code_hunt
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach 
using System;
 
class GFG{
 
// Function to find minimum number
// of moves to obtained B from A
static void convertBfromA(int a, int b)
{
     
    // Stores the minimum
    // number of moves
    int moves = 0;
 
    // Absolute difference
    int x = Math.Abs(a - b);
 
    // K is in range [0, 10]
    for(int i = 10; i > 0; i--)
    {
        moves += x / i;
        x = x % i;
    }
 
    // Print the required moves
    Console.Write(moves + " ");
}
 
// Driver Code
public static void Main ()
{
    int A = 188, B = 4;
 
    convertBfromA(A, B);
}
}
 
// This code is contributed by code_hunt
chevron_right

Output: 
19


 

Time Complexity: O(K), where K is in the range [0, 10]
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : code_hunt

Article Tags :
Practice Tags :