Skip to content
Related Articles

Related Articles

Count minimum character replacements required such that given string satisfies the given conditions
  • Last Updated : 19 Nov, 2020

Given a string S of length N consisting of lowercase alphabets, the task is to count the minimum number of characters that need to be replaced to make the given string S special.

A string S is special if and only if for all possible pairs (S[i], S[j]) ( 1-based indexing ) where 1 ≤ i ≤ N/2 and N / 2 + 1 ≤ j ≤ N, one of the following condition must be true:

  • S[i] < S[j]: For indices (i, j), each character in the left half (S[i]) is less than each character in the right half (S[j]).
  • S[i] > S[j]: For index (i, j), each character in left half (S[i]) is greater than each character in the right half (S[j]).
  • S[i] = S[j]: For index (i, j), each character in left half (S[i]) is equal to each character in the right half (S[j]).

Examples:

Input: S = “aababc“ 
Output: 2
Explanation:
The left and right part of the string are Left= “aab”, Right=”abc” 
Operation 1: Change s[4] → d
Operation 2: Change s[5] → d
After applying the above changes, the resultant string is “aabddc” which satisfy all the conditions for special string.

Input: S = “aabaab” 
Output: 2
Explanation:
The left and right part of the string are Left=”aab” Right=”aab”
Operation 1: Change s[3] → a
Operation 2: Change s[6] → a
After applying the above changes, the resultant string is “aaaaaa” which satisfy all the conditions for special string.



Approach: The idea is to observe that there is only 26 alphabets number of changes for s[i]==s[j] can be done using counting the frequency of characters. Follow the steps below to solve the above problem:

  • Store the frequency of characters of left and right half are stored in the array left[] and right[] respectively.
  • Initialize a variable count to keeps track of the minimum number of changes to be made.
  • Traverse over the range [0, 26] using variable d and change the characters as per the below cases:
    • For s[i] equals s[j]: Make all characters equal to a character c, then the value of count is  (N – left – right).
    • For s[i] less than s[j]:
      • Initially, with the maximum number of changes, make on the left side, let changes be N/2.
      • Subtract all the characters on the left side which are ≤ d to find the remaining characters to be changed.
      • Add all characters on the right side which are equal to d to change those characters that are greater than d as change -= left and change += right.
    • For s[i] greater than s[j]:
      • Initially, with the maximum number of changes, make on the right side, let change be N/2.
      • Subtract all the characters on the right side which are ≤d to find the remaining characters to be changed.
      • Add all characters on the left side which are equal to d to change those characters to > d. (s[i]<s[j]) as change += left and change -= right.
  • The minimum of all the count in the above cases is the required result.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function that finds the minimum
// count of steps required to make
// the string special
int minChange(string s, int n)
{
     
    // Stores the frequency of the
    // left & right half of string
    int L[26] = {0};
    int R[26] = {0};
     
    // Find frequency of left half
    for(int i = 0; i < n / 2; i++)
    {
        char ch = s[i];
        L[ch - 'a']++;
    }
     
    // Find frequency of left half
    for(int i = n / 2; i < n; i++)
    {
        char ch = s[i];
        R[ch - 'a']++;
    }
     
    int count = n;
     
    // Make all characters equal
    // to character c
    for(char ch = 'a'; ch <= 'z'; ch++)
    {
        count = min(count,
                    n - L[ch - 'a'] -
                        R[ch - 'a']);
    }
     
    // Case 1: For s[i] < s[j]
    int change = n / 2;
    for(int d = 0; d + 1 < 26; d++)
    {
         
        // Subtract all the characters
        // on left side that are <=d
        change -= L[d];
         
        // Adding all characters on the
        // right side that same as d
        change += R[d];
         
        // Find minimum value of count
        count = min(count, change);
    }
     
    // Similarly for Case 2: s[i] > s[j]
    change = n / 2;
     
    for(int d = 0; d + 1 < 26; d++)
    {
        change -= R[d];
        change += L[d];
        count = min(change, count);
    }
     
    // Return the minimum changes
    return count;
}
 
// Driver Code
int main()
{
     
    // Given string S
    string S = "aababc";
 
    int N = S.length();
 
    // Function Call
    cout << minChange(S, N) << "\n";
}
 
// This code is contributed by sallagondaavinashreddy7

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
 
import java.io.*;
import java.util.*;
class Main {
 
    // Function that finds the minimum
    // count of steps required to make
    // the string special
    public static int minChange(String s,
                                int n)
    {
 
        // Stores the frequency of the
        // left & right half of string
        int L[] = new int[26];
        int R[] = new int[26];
 
        // Find frequency of left half
        for (int i = 0; i < n / 2; i++) {
            char ch = s.charAt(i);
            L[ch - 'a']++;
        }
 
        // Find frequency of left half
        for (int i = n / 2; i < n; i++) {
            char ch = s.charAt(i);
            R[ch - 'a']++;
        }
        int count = n;
 
        // Make all characters equal
        // to character c
        for (char ch = 'a'; ch <= 'z'; ch++) {
 
            count = Math.min(
                count,
                n - L[ch - 'a']
                    - R[ch - 'a']);
        }
 
        // Case 1: For s[i] < s[j]
        int change = n / 2;
        for (int d = 0; d + 1 < 26; d++) {
 
            // Subtract all the characters
            // on left side that are <=d
            change -= L[d];
 
            // Adding all characters on the
            // right side that same as d
            change += R[d];
 
            // Find minimum value of count
            count = Math.min(count, change);
        }
 
        // Similarly for Case 2: s[i] > s[j]
        change = n / 2;
 
        for (int d = 0; d + 1 < 26; d++) {
            change -= R[d];
            change += L[d];
            count = Math.min(change, count);
        }
 
        // Return the minimum changes
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given string S
        String S = "aababc";
 
        int N = S.length();
 
        // Function Call
        System.out.println(minChange(S, N));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the
# above approach
 
# Function that finds the minimum
# count of steps required to make
# the string special
def minChange (s, n):
 
    # Stores the frequency of the
    # left & right half of string
    L = [0] * 26;
    R = [0] * 26;
 
    # Find frequency of left half
    for i in range(0, n // 2):
        ch = s[i];
        L[ord(ch) -
          ord('a')] += 1;
 
    # Find frequency of left half
    for i in range(n // 2, n):
        ch = s[i];
        R[ord(ch) -
          ord('a')] += 1;
 
    count = n;
 
    # Make all characters equal
    # to character c
    for ch in range(ord('a'),
                    ord('z')):
        count = min(count, n - L[ch - ord('a')] -
                               R[ch - ord('a')]);
 
    # Case 1: For s[i] < s[j]
    change = n / 2;
     
    for d in range(0, 25):
       
        # Subtract all the characters
        # on left side that are <=d
        change -= L[d];
 
        # Adding all characters on the
        # right side that same as d
        change += R[d];
 
        # Find minimum value of count
        count = min(count, change);
 
    # Similarly for Case 2: s[i] > s[j]
    change = n / 2;
 
    for d in range(0, 25):
        change -= R[d];
        change += L[d];
        count = min(change, count);
 
    # Return the minimum changes
    return int(count);
 
# Driver Code
if __name__ == '__main__':
   
    # Given string S
    S = "aababc";
 
    N = len(S);
 
    # Function Call
    print(minChange(S, N));
 
# This code is contributed by shikhasingrajput

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
 
class GFG{
     
// Function that finds the minimum
// count of steps required to make
// the string special
public static int minChange(String s,
                            int n)
{
     
    // Stores the frequency of the
    // left & right half of string
    int []L = new int[26];
    int []R = new int[26];
 
    // Find frequency of left half
    for(int i = 0; i < n / 2; i++)
    {
        char ch = s[i];
        L[ch - 'a']++;
    }
 
    // Find frequency of left half
    for(int i = n / 2; i < n; i++)
    {
        char ch = s[i];
        R[ch - 'a']++;
    }
    int count = n;
 
    // Make all characters equal
    // to character c
    for(char ch = 'a'; ch <= 'z'; ch++)
    {
        count = Math.Min(count,
                         n - L[ch - 'a'] -
                             R[ch - 'a']);
    }
 
    // Case 1: For s[i] < s[j]
    int change = n / 2;
    for(int d = 0; d + 1 < 26; d++)
    {
         
        // Subtract all the characters
        // on left side that are <=d
        change -= L[d];
         
        // Adding all characters on the
        // right side that same as d
        change += R[d];
 
        // Find minimum value of count
        count = Math.Min(count, change);
    }
 
    // Similarly for Case 2: s[i] > s[j]
    change = n / 2;
 
    for(int d = 0; d + 1 < 26; d++)
    {
        change -= R[d];
        change += L[d];
        count = Math.Min(change, count);
    }
 
    // Return the minimum changes
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given string S
    String S = "aababc";
     
    int N = S.Length;
     
    // Function Call
    Console.WriteLine(minChange(S, N));
}
}
 
// This code is contributed by Amit Katiyar

chevron_right


Output: 

2











 

Time Complexity: O(N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :