Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Count maximum number of disjoint pairs having one element not less than K times the other

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array arr[] and a positive integer K, the task is to find the maximum count of disjoint pairs (arr[i], arr[j]) such that arr[j] ≥ K * arr[i].

Examples:

Input: arr[] = { 1, 9, 4, 7, 3 }, K = 2
Output: 2
Explanation:
There can be 2 possible pairs that can formed from the given array i.e., (4, 1) and (7, 3) that satisfy the given conditions.

Input: arr[] = {2, 3, 4, 5, 6, 7, 8, 9}, K = 3
Output: 2

Approach: The given problem can be solved by using the Two Pointer Approach. Follow the steps below to solve the given problem:

  1. Sort the given array in increasing order.
  2. Initialize two variables i and j as 0 and (N / 2) respectively and variable count that stores the resultant maximum count of pairs.
  3. Traverse the given array over the range [0, N/2] and perform the following steps:
    • Increment the value of j until j < N and arr[j] < K * arr[i].
    • If the value of j is less than N, then increment the count of pairs by 1.
    • Increment the value of j by 1.
  4. After completing the above steps, print the value of count as the result.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum count
// of disjoint pairs such that arr[i]
// is at least K*arr[j]
int maximizePairs(int arr[], int n, int k)
{
    // Sort the array
    sort(arr, arr + n);
 
    // Initialize the two pointers
    int i = 0, j = n / 2;
 
    // Stores the total count of pairs
    int count = 0;
 
    for (i = 0; i < n / 2; i++) {
 
        // Increment j until a valid
        // pair is found or end of the
        // array is reached
        while (j < n
               && (k * arr[i]) > arr[j])
            j++;
 
        // If j is not the end of the
        // array, then a valid pair
        if (j < n)
            count++;
 
        j++;
    }
 
    // Return the possible count
    return count;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 9, 4, 7, 3 };
    int N = sizeof(arr) / sizeof(int);
    int K = 2;
    cout << maximizePairs(arr, N, K);
 
    return 0;
}

Java




// Java code for above approach
import java.util.*;
 
class GFG{
 
// Function to find the maximum count
// of disjoint pairs such that arr[i]
// is at least K*arr[j]
static int maximizePairs(int arr[], int n, int k)
{
    // Sort the array
    Arrays.sort(arr);
 
    // Initialize the two pointers
    int i = 0, j = n / 2;
 
    // Stores the total count of pairs
    int count = 0;
 
    for (i = 0; i < n / 2; i++) {
 
        // Increment j until a valid
        // pair is found or end of the
        // array is reached
        while (j < n
               && (k * arr[i]) > arr[j])
            j++;
 
        // If j is not the end of the
        // array, then a valid pair
        if (j < n)
            count++;
 
        j++;
    }
 
    // Return the possible count
    return count;
}
 
// Driver Code
public static void main(String[] args)
 
{
    int arr[] = { 1, 9, 4, 7, 3 };
    int N = arr.length;
    int K = 2;
    System.out.print(maximizePairs(arr, N, K));
}
}
 
// This code is contributed by avijitmondal1998.

Python3




# Python 3 program for the above approach
 
# Function to find the maximum count
# of disjoint pairs such that arr[i]
# is at least K*arr[j]
def maximizePairs(arr, n, k):
   
    # Sort the array
    arr.sort()
 
    # Initialize the two pointers
    i = 0
    j = n // 2
 
    # Stores the total count of pairs
    count = 0
 
    for i in range(n//2):
       
        # Increment j until a valid
        # pair is found or end of the
        # array is reached
        while (j < n and (k * arr[i]) > arr[j]):
            j += 1
 
        # If j is not the end of the
        # array, then a valid pair
        if (j < n):
            count += 1
 
        j += 1
 
    # Return the possible count
    return count
 
# Driver Code
if __name__ == '__main__':
    arr = [1, 9, 4, 7, 3]
    N = len(arr)
    K = 2
    print(maximizePairs(arr, N, K))
     
    # This code is contributed by SURENDRA_GANGWAR.

C#




// C# code for above approach
using System;
 
class GFG{
 
// Function to find the maximum count
// of disjoint pairs such that arr[i]
// is at least K*arr[j]
static int maximizePairs(int []arr, int n, int k)
{
    // Sort the array
    Array.Sort(arr);
 
    // Initialize the two pointers
    int i = 0, j = n / 2;
 
    // Stores the total count of pairs
    int count = 0;
 
    for (i = 0; i < n / 2; i++) {
 
        // Increment j until a valid
        // pair is found or end of the
        // array is reached
        while (j < n
               && (k * arr[i]) > arr[j])
            j++;
 
        // If j is not the end of the
        // array, then a valid pair
        if (j < n)
            count++;
 
        j++;
    }
 
    // Return the possible count
    return count;
}
 
// Driver Code
public static void Main(String[] args)
 
{
    int []arr = { 1, 9, 4, 7, 3 };
    int N = arr.Length;
    int K = 2;
    Console.Write(maximizePairs(arr, N, K));
}
}
 
// This code is contributed by shivanisinghss2110

Javascript




<script>
// Javascript program for the above approach
 
// Function to find the maximum count
// of disjoint pairs such that arr[i]
// is at least K*arr[j]
function maximizePairs(arr, n, k) {
  // Sort the array
  arr.sort((a, b) => a - b);
 
  // Initialize the two pointers
  let i = 0,
    j = Math.floor(n / 2);
 
  // Stores the total count of pairs
  let count = 0;
 
  for (i = 0; i < Math.floor(n / 2); i++) {
    // Increment j until a valid
    // pair is found or end of the
    // array is reached
    while (j < n && k * arr[i] > arr[j]) j++;
 
    // If j is not the end of the
    // array, then a valid pair
    if (j < n) count++;
 
    j++;
  }
 
  // Return the possible count
  return count;
}
 
// Driver Code
 
let arr = [1, 9, 4, 7, 3];
let N = arr.length;
let K = 2;
document.write(maximizePairs(arr, N, K));
 
// This code is contributed by gfgking.
</script>

Output: 

2

 

Time Complexity: O(N*log N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Last Updated : 11 Oct, 2022
Like Article
Save Article
Similar Reads
Related Tutorials