Given an array A and positive integer K. The task is to find maximum number of elements for which the absolute difference of any of the pair does not exceed K.
Examples:
Input: A[] = {1, 26, 17, 12, 15, 2}, K = 5
Output: 3
There are maximum 3 values so that the absolute difference of each pair
does not exceed K(K=5) ie., {12, 15, 17}
Input: A[] = {1, 2, 5, 10, 8, 3}, K = 4
Output: 4
There are maximum 4 values so that the absolute difference of each pair
does not exceed K(K=4) ie., {1, 2, 3, 5}
Approach:
- Sort the given Array in ascending order.
- Iterate from index i = 0 to n.
- For every A[i] count how many values which are in range A[i] to A[i] + K
ie., A[i]<= A[j] <= A[i]+K - Return Max Count
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int maxCount( int A[], int N, int K)
{
int maximum = 0;
int i = 0, j = 0;
sort(A, A + N);
for (i = 0; i < N; i++) {
while (j < N && A[j] <= A[i] + K){
j++;
}
maximum=max(maximum,j-i);
}
return maximum;
}
int main()
{
int A[] = { 1, 26, 17, 12, 15, 2 };
int N = sizeof (A) / sizeof (A[0]);
int K = 5;
cout << maxCount(A, N, K);
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int maxCount( int A[], int N, int K)
{
int maximum = 0 ;
int i = 0 , j = 0 ;
int start = 0 ;
int end = 0 ;
Arrays.sort(A);
for (i = 0 ; i < N; i++)
{
while (j < N && A[j] <= A[i] + K)
j++;
if (maximum < (j - i))
{
maximum = (j - i);
start = i;
end = j;
}
}
return maximum;
}
public static void main(String[] args)
{
int A[] = { 1 , 26 , 17 , 12 , 15 , 2 };
int N = A.length;
int K = 5 ;
System.out.println(maxCount(A, N, K));
}
}
|
Python3
def maxCount(A, N, K):
maximum = 0
start = 0
end = 0
j = 0
A.sort()
for i in range ( 0 , N):
while (j < N and A[j] < = A[i] + K):
j + = 1
if maximum < (j - i ):
maximum = (j - i)
start = i;
end = j;
return maximum
A = [ 1 , 26 , 17 , 12 , 15 , 2 ]
N = len (A)
K = 5
print (maxCount(A, N, K))
|
C#
using System;
class GFG
{
static int maxCount( int []A, int N, int K)
{
int maximum = 0;
int i = 0, j = 0;
int start = 0;
int end = 0;
Array.Sort(A);
for (i = 0; i < N; i++)
{
while (j < N && A[j] <= A[i] + K)
j++;
if (maximum < (j - i))
{
maximum = (j - i);
start = i;
end = j;
}
}
return maximum;
}
public static void Main()
{
int []A = { 1, 26, 17, 12, 15, 2 };
int N = A.Length;
int K = 5;
Console.Write(maxCount(A, N, K));
}
}
|
PHP
<?php
function maxCount( $A , $N , $K )
{
$maximum = 0;
$i = 0;
$j = 0;
$start = 0;
$end = 0;
sort( $A );
for ( $i = 0; $i < $N ; $i ++)
{
while ( $j < $N &&
$A [ $j ] <= $A [ $i ] + $K )
$j ++;
if ( $maximum < ( $j - $i ))
{
$maximum = ( $j - $i );
$start = $i ;
$end = $j ;
}
}
return $maximum ;
}
$A = array ( 1, 26, 17, 12, 15, 2 );
$N = Count ( $A );
$K = 5;
echo maxCount( $A , $N , $K );
?>
|
Javascript
<script>
function maxCount(A, N, K)
{
var maximum = 0;
var i = 0, j = 0;
var start = 0;
var end = 0;
A.sort((a,b)=> a-b)
for (i = 0; i < N; i++) {
while (j < N && A[j] <= A[i] + K)
j++;
if (maximum < (j - i)) {
maximum = (j - i);
start = i;
end = j;
}
}
return maximum;
}
var A = [1, 26, 17, 12, 15, 2 ];
var N = A.length;
var K = 5;
document.write( maxCount(A, N, K));
</script>
|
Time Complexity: O(N logN), where N*logN is the time required to sort the given array
Auxiliary Space: O(1), no extra space required