Count integers in an Array which are multiples their bits counts

Given an array arr[] of N elements, the task is to count all the elements which are a multiple of their set bits count.

Examples:

Input : arr[] = { 1, 2, 3, 4, 5, 6 }
Output : 4
Explanation :
There numbers which are multiple of their setbits count are { 1, 2, 4, 6 }.

Input : arr[] = {10, 20, 30, 40}
Output : 3
Explanation :
There numbers which are multiple of their setbits count are { 10, 20, 40 }

Approach: Loop through each array elements one by one. Count the set bits of every number in the array. Check if the current integer is a multiple of its set bits count or not. If ‘yes’ then increment the counter by 1, else skip that integer.

Below is the implementation of above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <bits/stdc++.h>
using namespace std;
  
// Function to find the count of numbers
// which are multiple of its set bits count
int find_count(vector<int>& arr)
{
    // variable to store count
    int ans = 0;
  
    // iterate over elements of array
    for (int i : arr) {
  
        // Get the set-bits count of each element
        int x = __builtin_popcount(i);
  
        // Check if the setbits count
        // divides the integer i
        if (i % x == 0)
  
            // Increment the count
            // of required numbers by 1
            ans += 1;
    }
  
    return ans;
}
  
// Driver code
int main()
{
    vector<int> arr
        = { 1, 2, 3, 4, 5, 6 };
  
    cout << find_count(arr);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

class GFG{
   
// Function to find the count of numbers
// which are multiple of its set bits count
static int find_count(int []arr)
{
    // variable to store count
    int ans = 0;
   
    // iterate over elements of array
    for (int i : arr) {
   
        // Get the set-bits count of each element
        int x = Integer.bitCount(i);
   
        // Check if the setbits count
        // divides the integer i
        if (i % x == 0)
   
            // Increment the count
            // of required numbers by 1
            ans += 1;
    }
   
    return ans;
}
   
// Driver code
public static void main(String[] args)
{
    int []arr
        = { 1, 2, 3, 4, 5, 6 };
   
    System.out.print(find_count(arr));
   
}
}
  
// This code contributed by Princi Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach
  
# function to return set bits count
def bitsoncount(x):
    return bin(x).count('1')
  
# Function to find the count of numbers 
# which are multiple of its set bits count 
def find_count(arr) :
    # variable to store count 
    ans = 0 
  
    # iterate over elements of array 
    for i in arr :
  
        # Get the set-bits count of each element 
        x = bitsoncount(i)
  
        # Check if the setbits count 
        # divides the integer i 
        if (i % x == 0):
  
            # Increment the count 
            # of required numbers by 1 
            ans += 1
  
    return ans
  
# Driver code 
arr = [ 1, 2, 3, 4, 5, 6 ]
  
print(find_count(arr))
  
# This code is contributed by Sanjit_Prasad
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

using System;
  
public class GFG{
    
// Function to find the count of numbers
// which are multiple of its set bits count
static int find_count(int []arr)
{
    // Variable to store count
    int ans = 0;
    
    // Iterate over elements of array
    foreach (int i in arr) {
    
        // Get the set-bits count of each element
        int x = bitCount(i);
    
        // Check if the setbits count
        // divides the integer i
        if (i % x == 0)
    
            // Increment the count
            // of required numbers by 1
            ans += 1;
    }
    
    return ans;
}
static int bitCount(long x)
{
    int setBits = 0;
    while (x != 0) {
        x = x & (x - 1);
        setBits++;
    }
    return setBits;
}
    
// Driver code
public static void Main(String[] args)
{
    int []arr
        = { 1, 2, 3, 4, 5, 6 };
    
    Console.Write(find_count(arr));
    
}
}
// This code contributed by Princi Singh
chevron_right


Output :
4

Time complexity:- O(nlog(max(arr[])), where n is the size of the array,
Space complexity:- O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Sanjit_Prasad, princi singh

Article Tags :
Practice Tags :