Given an array *arr* of *N* integers, the task is to find the number of elements that satisfy the following condition:

If the element is *X* then there has to be exactly *X* number of elements in the array (excluding the number *X*) which are greater than or equal to *X*

**Examples:**

Input:arr[] = {1, 2, 3, 4}Output:1 Only element 2 satisfies the condition as there are exactly 2 elements which are greater than or equal to 2 (3, 4) except 2 itself.Input:arr[] = {5, 5, 5, 5, 5}Output:0

**Approach:** The problem involves efficient searching for each arr[i] element the number of arr[j]’s (i != j) which are greater than or equal to arr[i].

- Sort the array in ascending order.
- For every element arr[i], using binary search get the count of all the elements that are greater than or equal to arr[i] except arr[i] itself.
- If the count is equal to arr[i] then increment the result.
- Print the value of the result in the end.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` `#define ll long long ` ` ` `ll ` `int` `getCount(vector<ll ` `int` `> v, ` `int` `n) ` `{ ` ` ` `// Sorting the vector ` ` ` `sort((v).begin(), (v).end()); ` ` ` `ll ` `int` `cnt = 0; ` ` ` `for` `(ll ` `int` `i = 0; i < n; i++) { ` ` ` ` ` `// Count of numbers which ` ` ` `// are greater than v[i] ` ` ` `ll ` `int` `tmp = v.end() - 1 ` ` ` `- upper_bound((v).begin(), (v).end(), v[i] - 1); ` ` ` ` ` `if` `(tmp == v[i]) ` ` ` `cnt++; ` ` ` `} ` ` ` `return` `cnt; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `ll ` `int` `n; ` ` ` `n = 4; ` ` ` `vector<ll ` `int` `> v; ` ` ` `v.push_back(1); ` ` ` `v.push_back(2); ` ` ` `v.push_back(3); ` ` ` `v.push_back(4); ` ` ` ` ` `cout << getCount(v, n); ` ` ` `return` `0; ` `} ` |

## Java

`// Java implementation of the approach ` `import` `java.util.*; ` ` ` `class` `GFG ` `{ ` ` ` `static` `int` `getCount(` `int` `[] v, ` `int` `n) ` ` ` `{ ` ` ` ` ` `// Sorting the vector ` ` ` `Arrays.sort(v); ` ` ` `int` `cnt = ` `0` `; ` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++) ` ` ` `{ ` ` ` ` ` `// Count of numbers which ` ` ` `// are greater than v[i] ` ` ` `int` `tmp = n - ` `1` `- upperBound(v, n, v[i] - ` `1` `); ` ` ` `if` `(tmp == v[i]) ` ` ` `cnt++; ` ` ` `} ` ` ` `return` `cnt; ` ` ` `} ` ` ` ` ` `// Function to implement upper_bound() ` ` ` `static` `int` `upperBound(` `int` `[] array, ` ` ` `int` `length, ` `int` `value) ` ` ` `{ ` ` ` `int` `low = ` `0` `; ` ` ` `int` `high = length; ` ` ` `while` `(low < high) ` ` ` `{ ` ` ` `final` `int` `mid = (low + high) / ` `2` `; ` ` ` `if` `(value >= array[mid]) ` ` ` `{ ` ` ` `low = mid + ` `1` `; ` ` ` `} ` ` ` `else` ` ` `{ ` ` ` `high = mid; ` ` ` `} ` ` ` `} ` ` ` `return` `low; ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{ ` ` ` `int` `n = ` `4` `; ` ` ` `int` `[] v = { ` `1` `, ` `2` `, ` `3` `, ` `4` `}; ` ` ` `System.out.println(getCount(v, n)); ` ` ` `} ` `} ` ` ` `// This code is contributed by ` `// sanjeev2552 ` |

## Python3

`# Python3 implementation of the approach ` `from` `bisect ` `import` `bisect as upper_bound ` ` ` `def` `getCount(v, n): ` ` ` ` ` `# Sorting the vector ` ` ` `v ` `=` `sorted` `(v) ` ` ` `cnt ` `=` `0` ` ` `for` `i ` `in` `range` `(n): ` ` ` ` ` `# Count of numbers which ` ` ` `# are greater than v[i] ` ` ` `tmp ` `=` `n ` `-` `1` `-` `upper_bound(v, v[i] ` `-` `1` `) ` ` ` ` ` `if` `(tmp ` `=` `=` `v[i]): ` ` ` `cnt ` `+` `=` `1` ` ` `return` `cnt ` ` ` `# Driver codemain() ` `n ` `=` `4` `v ` `=` `[] ` `v.append(` `1` `) ` `v.append(` `2` `) ` `v.append(` `3` `) ` `v.append(` `4` `) ` ` ` `print` `(getCount(v, n)) ` ` ` `# This code is contributed by Mohit Kumar ` |

## C#

`// C# implementation of the approach ` `using` `System; ` ` ` `class` `GFG ` `{ ` ` ` `static` `int` `getCount(` `int` `[] v, ` `int` `n) ` ` ` `{ ` ` ` ` ` `// Sorting the vector ` ` ` `Array.Sort(v); ` ` ` `int` `cnt = 0; ` ` ` `for` `(` `int` `i = 0; i < n; i++) ` ` ` `{ ` ` ` ` ` `// Count of numbers which ` ` ` `// are greater than v[i] ` ` ` `int` `tmp = n - 1 - upperBound(v, n, v[i] - 1); ` ` ` `if` `(tmp == v[i]) ` ` ` `cnt++; ` ` ` `} ` ` ` `return` `cnt; ` ` ` `} ` ` ` ` ` `// Function to implement upper_bound() ` ` ` `static` `int` `upperBound(` `int` `[] array, ` ` ` `int` `length, ` `int` `value) ` ` ` `{ ` ` ` `int` `low = 0; ` ` ` `int` `high = length; ` ` ` `while` `(low < high) ` ` ` `{ ` ` ` `int` `mid = (low + high) / 2; ` ` ` `if` `(value >= array[mid]) ` ` ` `{ ` ` ` `low = mid + 1; ` ` ` `} ` ` ` `else` ` ` `{ ` ` ` `high = mid; ` ` ` `} ` ` ` `} ` ` ` `return` `low; ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `Main(String[] args) ` ` ` `{ ` ` ` `int` `n = 4; ` ` ` `int` `[] v = { 1, 2, 3, 4 }; ` ` ` `Console.WriteLine(getCount(v, n)); ` ` ` `} ` `} ` ` ` `// This code is contributed by PrinciRaj1992 ` |

**Output:**

1

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.