Skip to content
Related Articles

Related Articles

Improve Article
Count Distinct Rectangles in N*N Chessboard
  • Difficulty Level : Basic
  • Last Updated : 27 Apr, 2021

Given a N x N Chessboard. The task is to count distinct rectangles from the chessboard. For example, if the input is 8 then the output should be 36.
Examples: 
 

Input: N = 4 
Output: 10

Input: N = 6
Output: 21

 

Approach: 
Suppose N = 8 i.e. 8 x 8 chessboard is given, So different rectangles that can be formed are: 
 

1 x 1, 1 x 2, 1 x 3, 1 x 4, 1 x 5, 1 x 6, 1 x 7, 1 x 8 = 8
      2 x 2, 2 x 3, 2 x 4, 2 x 5, 2 x 6, 2 x 7, 2 x 8 = 7 
            3 x 3, 3 x 4, 3 x 5, 3 x 6, 2 x 7, 3 x 8 = 6 
                  4 x 4, 4 x 5, 4 x 6, 4 x 7, 4 x 8 = 5 
                        5 x 5, 5 x 6, 5 x 7, 5 x 8 = 4
                              6 x 6, 6 x 7, 6 x 8 = 3
                                    7 x 7, 7 x 8 = 2
                                          8 x 8 = 1

So total unique rectangles formed = 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 which is the sum of the first 8 natural numbers. So in general, distinct rectangles that can be formed in N x N chessboard is: 
 

Sum of the first N natural numbers = N*(N+1)/2
                                   = 8*(8+1)/2
                                   = 36

Below is the implementation of the above approach: 
 



C++




// C++ code to count distinct rectangle in a chessboard
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of distinct rectangles
int count(int N)
{
    int a = 0;
    a = (N * (N + 1)) / 2;
    return a;
}
 
// Driver Code
int main()
{
    int N = 4;
    cout<<count(N);
}
 
// This code is contributed by nidhi16bcs2007

Java




// Java program to count unique rectangles in a chessboard
class Rectangle {
 
    // Function to count distinct rectangles
    static int count(int N)
    {
        int a = 0;
 
        a = (N * (N + 1)) / 2;
 
        return a;
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int n = 4;
        System.out.print(count(n));
    }
}

Python3




    # Python code to count distinct rectangle in a chessboard
 
# Function to return the count
# of distinct rectangles
def count(N):
    a = 0;
    a = (N * (N + 1)) / 2;
    return int(a);
 
 
# Driver Code
N = 4;
print(count(N));
 
# This code has been contributed by 29AjayKumar

C#




// C# program to count unique rectangles in a chessboard
using System;
 
class Rectangle
{
 
    // Function to count distinct rectangles
    static int count(int N)
    {
        int a = 0;
 
        a = (N * (N + 1)) / 2;
 
        return a;
    }
 
    // Driver Code
    public static void Main()
    {
        int n = 4;
        Console.Write(count(n));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




// Javascript program to count unique rectangles in a chessboard
   
   // Function to count distinct rectangles
    function count(N)
    {
        var a = 0;
   
        a = (N * (N + 1)) / 2;
   
        return a;
    }
   
    // Driver Code
        var n = 4;
        document.write(count(n));
 
// This code is contributed by bunnyram19. 
Output: 
10

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :