Skip to content
Related Articles
Open in App
Not now

Related Articles

Count distinct pair of indices in Array whose GCD and LCM are same

Improve Article
Save Article
Like Article
  • Last Updated : 30 Dec, 2022
Improve Article
Save Article
Like Article

Given an array A[] of length N, the task is to find the total number of distinct pairs (i, j) of indices where 1 ≤ i < j ≤ N such that the greatest common divisor(gcd) and least common multiple(lcm) of these elements are equal.

Examples:

Input: A[] = {2, 5, 5, 5, 6} 
Output:

Explanation: Here pair (i, j) are: (2, 3), (3, 4), and (2, 4). 
To elaborate, gcd(A2, A3) = lcm(A2, A3) = 5.

Input: A[] = {22, 22, 38, 38} 
Output: 2

Approach: The problem can be solved based on the following observation:

Observations:

  • The observation to be made here is as follows: gcd(Ai, Aj) = lcm(Ai, Aj)⟺ Ai = Aj
  • So, the problem reduces to simply counting the number of pairs of equal elements in A.
  • Build a frequency map of the elements of A (using map/unordered_map in C++, TreeMap/Hashmap in Java, or dict in python) and then iterate across its elements.
  • If an element x has a frequency of fx, then it contributes fxâ‹…(fx−1)/2 pairs to the answer, so sum this value across all x.

Follow the below steps to solve the problem:

  • Declare a hash map.
  • Start iterating over the entire array
    • If the element is present in the map, then increase the value of frequency by 1.
    • Otherwise, insert that element into the map.
  • After that start traversing the map and get the value(frequency of element).
  • If an element x has a frequency of fx, then it contributes fxâ‹…(fx − 1) / 2 pairs to the answer, so sum this value across all x.

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
long pairCount(int arr[], int size)
{
 
  // Function to find number of
  // distinct pair
  unordered_map<int, int> freqMap;
 
  for (int i = 0; i < size; i++) {
    freqMap[arr[i]]++;
  }
  long ans = 0;
 
  for (auto it : freqMap) {
    ans += (long)it.second * (long)(it.second - 1) / 2;
  }
  return ans;
}
 
// Driver code
int main()
{
 
  // Function call
  int A[] = { 2, 5, 5, 5, 6 };
  int size = sizeof(A) / sizeof(A[0]);
  cout << pairCount(A, size);
}
 
// This code is contributed by aarohi2616.

Java




// Java code to implement the approach
import java.io.*;
import java.util.*;
 
public class GFG {
    // Function to find number of
    // distinct pair
    public static long pairCount(int a[], int n)
    {
        Map<Integer, Integer> mp = new HashMap<>();
        for (int i = 0; i < n; i++) {
            if (mp.containsKey(a[i])) {
                mp.put(a[i], mp.get(a[i]) + 1);
            }
            else {
                mp.put(a[i], 1);
            }
        }
        long ans = 0;
        for (int i : mp.values()) {
            ans += (long)i * (long)(i - 1) / 2;
        }
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int A[] = { 2, 5, 5, 5, 6 };
        int N = A.length;
 
        // Function call
        System.out.println(pairCount(A, N));
    }
}

C#




// C# code to implement the approach
 
using System;
using System.Collections.Generic;
 
public class GFG {
 
    // Function to find number of distinct pair
    public static long pairCount(int[] a, int n)
    {
        Dictionary<int, int> mp
            = new Dictionary<int, int>();
        for (int i = 0; i < n; i++) {
            if (mp.ContainsKey(a[i])) {
                mp[a[i]] += 1;
            }
            else {
                mp.Add(a[i], 1);
            }
        }
        long ans = 0;
 
        Dictionary<int, int>.ValueCollection valueColl
            = mp.Values;
 
        foreach(int i in valueColl)
        {
            ans += (long)i * (long)(i - 1) / 2;
        }
        return ans;
    }
 
    static public void Main()
    {
 
        // Code
        int[] A = { 2, 5, 5, 5, 6 };
        int N = A.Length;
 
        // Function call
        Console.WriteLine(pairCount(A, N));
    }
}
 
// This code is contributed by lokeshmvs21.

Python3




class GFG :
    # Function to find number of
    # distinct pair
    @staticmethod
    def  pairCount( a,  n) :
        mp =  dict()
        i = 0
        while (i < n) :
            if ((a[i] in mp.keys())) :
                mp[a[i]] = mp.get(a[i]) + 1
            else :
                mp[a[i]] = 1
            i += 1
        ans = 0
        for i in mp.values() :
            ans += int(i) * int((i - 1)) / 2
        return ans
       
    # Driver code
    @staticmethod
    def main( args) :
        A = [2, 5, 5, 5, 6]
        N = len(A)
         
        # Function call
        print(GFG.pairCount(A, N))
     
if __name__=="__main__":
    GFG.main([])
     
    # This code is contributed by aadityaburujwale.

Javascript




class GFG
{
    // Function to find number of
    // distinct pair
    static pairCount(a, n)
    {
        var mp = new Map();
        for (i; i < n; i++)
        {
            if (mp.has(a[i]))
            {
                mp.set(a[i],mp.get(a[i]) + 1);
            }
            else
            {
                mp.set(a[i],1);
            }
        }
        var ans = 0;
        for ( const  i of mp.values()) {
        ans += parseInt(i) * parseInt((i - 1)) / 2;
}
        return ans;
    }
    // Driver code
    static main(args)
    {
        var A = [2, 5, 5, 5, 6];
        var N = A.length;
        // Function call
        console.log(GFG.pairCount(A, N));
    }
}
GFG.main([]);
 
// This code is contributed by aadityaburujwale.

Output

3

Time Complexity: O(N) 
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Like Article
Save Article
Related Articles

Start Your Coding Journey Now!