Count distinct occurrences as a subsequence

Given a two strings S and T, find count of distinct occurrences of T in S as a subsequence.

Examples:

Input  : S = banana, T = ban
Output : 3
T appears in S as below three subsequences.
[ban], [ba  n], [b   an]

Input  : S = geeksforgeeks, T = ge
Output : 6
T appears in S as below three subsequences.
[ge], [     ge], [g e], [g    e] [g     e]
and [     g e]      



This problem can be recursively defined as below.

// Returns count of subsequences of S that match T 
// m is length of T and n is length of S
subsequenceCount(S, T, n, m)

   // An empty string is subsequence of all.
   1) If length of T is 0, return 1.

   // Else no string can be a sequence of empty S.
   2) Else if S is empty, return 0.
    
   3) Else if last characters of S and T don't match,
      remove last character of S and recur for remaining
        return subsequenceCount(S, T, n-1, m)

   4) Else (Last characters match), the result is sum
      of two counts.
        
        // Remove last character of S and recur.
        a) subsequenceCount(S, T, n-1, m) + 

        // Remove last characters of S and T, and recur.
        b) subsequenceCount(S, T, n-1, m-1)        

Since there are overlapping subproblems in above recurrence result, we can apply dynamic programming approach to solve above problem. We create a 2D array mat[m+1][n+1] where m is length of string T and n is length of string S. mat[i][j] denotes the number of distinct subsequence of substring S(1..i) and substring T(1..j) so mat[m][n] contains our solution.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

/* C/C++ program to count number of times S appears
   as a subsequence in T */
#include <bits/stdc++.h>
using namespace std;
  
int findSubsequenceCount(string S, string T)
{
    int m = T.length(), n = S.length();
  
    // T can't appear as a subsequence in S
    if (m > n)
        return 0;
  
    // mat[i][j] stores the count of occurrences of
    // T(1..i) in S(1..j).
    int mat[m + 1][n + 1];
  
    // Initializing first column with all 0s. An empty
    // string can't have another string as suhsequence
    for (int i = 1; i <= m; i++)
        mat[i][0] = 0;
  
    // Initializing first row with all 1s. An empty
    // string is subsequence of all.
    for (int j = 0; j <= n; j++)
        mat[0][j] = 1;
  
    // Fill mat[][] in bottom up manner
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            // If last characters don't match, then value
            // is same as the value without last character
            // in S.
            if (T[i - 1] != S[j - 1])
                mat[i][j] = mat[i][j - 1];
  
            // Else value is obtained considering two cases.
            // a) All substrings without last character in S
            // b) All substrings without last characters in
            // both.
            else
                mat[i][j] = mat[i][j - 1] + mat[i - 1][j - 1];
        }
    }
  
    /* uncomment this to print matrix mat
    for (int i = 1; i <= m; i++, cout << endl)
        for (int j = 1; j <= n; j++)
            cout << mat[i][j] << " ";  */
    return mat[m][n];
}
  
// Driver code to check above method
int main()
{
    string T = "ge";
    string S = "geeksforgeeks";
    cout << findSubsequenceCount(S, T) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count number of times
// S appears as a subsequence in T
import java.io.*;
  
class GFG {
    static int findSubsequenceCount(String S, String T)
    {
        int m = T.length();
        int n = S.length();
  
        // T can't appear as a subsequence in S
        if (m > n)
            return 0;
  
        // mat[i][j] stores the count of
        // occurrences of T(1..i) in S(1..j).
        int mat[][] = new int[m + 1][n + 1];
  
        // Initializing first column with
        // all 0s. An emptystring can't have
        // another string as suhsequence
        for (int i = 1; i <= m; i++)
            mat[i][0] = 0;
  
        // Initializing first row with all 1s.
        // An empty string is subsequence of all.
        for (int j = 0; j <= n; j++)
            mat[0][j] = 1;
  
        // Fill mat[][] in bottom up manner
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                // If last characters don't match,
                // then value is same as the value
                // without last character in S.
                if (T.charAt(i - 1) != S.charAt(j - 1))
                    mat[i][j] = mat[i][j - 1];
  
                // Else value is obtained considering two cases.
                // a) All substrings without last character in S
                // b) All substrings without last characters in
                // both.
                else
                    mat[i][j] = mat[i][j - 1] + mat[i - 1][j - 1];
            }
        }
  
        /* uncomment this to print matrix mat
        for (int i = 1; i <= m; i++, cout << endl)
            for (int j = 1; j <= n; j++)
                System.out.println ( mat[i][j] +" "); */
        return mat[m][n];
    }
  
    // Driver code to check above method
    public static void main(String[] args)
    {
        String T = "ge";
        String S = "geeksforgeeks";
        System.out.println(findSubsequenceCount(S, T));
    }
}
// This code is contributed by vt_m

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count number of times
// S appears as a subsequence in T
using System;
  
class GFG {
      
    static int findSubsequenceCount(string S, string T)
    {
        int m = T.Length;
        int n = S.Length;
  
        // T can't appear as a subsequence in S
        if (m > n)
            return 0;
  
        // mat[i][j] stores the count of
        // occurrences of T(1..i) in S(1..j).
        int[, ] mat = new int[m + 1, n + 1];
  
        // Initializing first column with
        // all 0s. An emptystring can't have
        // another string as suhsequence
        for (int i = 1; i <= m; i++)
            mat[i, 0] = 0;
  
        // Initializing first row with all 1s.
        // An empty string is subsequence of all.
        for (int j = 0; j <= n; j++)
            mat[0, j] = 1;
  
        // Fill mat[][] in bottom up manner
        for (int i = 1; i <= m; i++) {
              
            for (int j = 1; j <= n; j++) {
                  
                // If last characters don't match,
                // then value is same as the value
                // without last character in S.
                if (T[i - 1] != S[j - 1])
                    mat[i, j] = mat[i, j - 1];
  
                // Else value is obtained considering two cases.
                // a) All substrings without last character in S
                // b) All substrings without last characters in
                // both.
                else
                    mat[i, j] = mat[i, j - 1] + mat[i - 1, j - 1];
            }
        }
  
        /* uncomment this to print matrix mat
        for (int i = 1; i <= m; i++, cout << endl)
            for (int j = 1; j <= n; j++)
                System.out.println ( mat[i][j] +" "); */
        return mat[m, n];
    }
  
    // Driver code to check above method
    public static void Main()
    {
        string T = "ge";
        string S = "geeksforgeeks";
        Console.WriteLine(findSubsequenceCount(S, T));
    }
}
  
// This code is contributed by vt_m

chevron_right



Output:

6

Time Complexity : O(m*n)
Auxiliary Space : O(m*n)

Since mat[i][j] accesses elements of current row and previous row only, we can optimize auxiliary space just by using two rows only reducing space from m*n to 2*n.

This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : vt_m