Given an array of size n and an integer k, return the of count of distinct numbers in all windows of size k.

Example:

Input: arr[] = {1, 2, 1, 3, 4, 2, 3}; k = 4 Output: 3 4 4 3 Explanation: First window is {1, 2, 1, 3}, count of distinct numbers is 3 Second window is {2, 1, 3, 4} count of distinct numbers is 4 Third window is {1, 3, 4, 2} count of distinct numbers is 4 Fourth window is {3, 4, 2, 3} count of distinct numbers is 3

Source: Microsoft Interview Question

A **Simple Solution** is to traverse the given array, consider every window in it and count distinct elements in the window. Below is implementation of simple solution.

## C++

`// Simple C++ program to count distinct elements in every ` `// window of size k ` `#include <iostream> ` `using` `namespace` `std; ` ` ` `// Counts distinct elements in window of size k ` `int` `countWindowDistinct(` `int` `win[], ` `int` `k) ` `{ ` ` ` `int` `dist_count = 0; ` ` ` ` ` `// Traverse the window ` ` ` `for` `(` `int` `i=0; i<k; i++) ` ` ` `{ ` ` ` `// Check if element arr[i] exists in arr[0..i-1] ` ` ` `int` `j; ` ` ` `for` `(j=0; j<i; j++) ` ` ` `if` `(win[i] == win[j]) ` ` ` `break` `; ` ` ` `if` `(j==i) ` ` ` `dist_count++; ` ` ` `} ` ` ` `return` `dist_count; ` `} ` ` ` `// Counts distinct elements in all windows of size k ` `void` `countDistinct(` `int` `arr[], ` `int` `n, ` `int` `k) ` `{ ` ` ` `// Traverse through every window ` ` ` `for` `(` `int` `i=0; i<=n-k; i++) ` ` ` `cout << countWindowDistinct(arr+i, k) << endl; ` `} ` ` ` `// Driver program ` `int` `main() ` `{ ` ` ` `int` `arr[] = {1, 2, 1, 3, 4, 2, 3}, k = 4; ` ` ` `int` `n = ` `sizeof` `(arr)/` `sizeof` `(arr[0]); ` ` ` `countDistinct(arr, n, k); ` ` ` `return` `0; ` `} ` |

## Java

`// Simple Java program to count distinct elements in every ` `// window of size k ` ` ` `import` `java.util.Arrays; ` ` ` `class` `Test ` `{ ` ` ` `// Counts distinct elements in window of size k ` ` ` `static` `int` `countWindowDistinct(` `int` `win[], ` `int` `k) ` ` ` `{ ` ` ` `int` `dist_count = ` `0` `; ` ` ` ` ` `// Traverse the window ` ` ` `for` `(` `int` `i = ` `0` `; i < k; i++) ` ` ` `{ ` ` ` `// Check if element arr[i] exists in arr[0..i-1] ` ` ` `int` `j; ` ` ` `for` `(j = ` `0` `; j < i; j++) ` ` ` `if` `(win[i] == win[j]) ` ` ` `break` `; ` ` ` `if` `(j == i) ` ` ` `dist_count++; ` ` ` `} ` ` ` `return` `dist_count; ` ` ` `} ` ` ` ` ` `// Counts distinct elements in all windows of size k ` ` ` `static` `void` `countDistinct(` `int` `arr[], ` `int` `n, ` `int` `k) ` ` ` `{ ` ` ` `// Traverse through every window ` ` ` `for` `(` `int` `i = ` `0` `; i <= n - k; i++) ` ` ` `System.out.println(countWindowDistinct ` ` ` `(Arrays.copyOfRange(arr, i, arr.length), k)); ` ` ` `} ` ` ` ` ` `// Driver method ` ` ` `public` `static` `void` `main(String args[]) ` ` ` `{ ` ` ` `int` `arr[] = {` `1` `, ` `2` `, ` `1` `, ` `3` `, ` `4` `, ` `2` `, ` `3` `}, k = ` `4` `; ` ` ` ` ` `countDistinct(arr, arr.length, k); ` ` ` `} ` `} ` |

Output:

3 4 4 3

Time complexity of the above solution is O(nk^{2}). We can improve time complexity to O(nkLok) by modifying countWindowDistinct() to use sorting. The function can further be optimized to use hashing to find distinct elements in a window. With hashing the time complexity becomes O(nk). Below is a different approach that works in O(n) time.

An **Efficient Solution** is to use the count of the previous window while sliding the window. The idea is to create a hash map that stores elements of the current window. When we slide the window, we remove an element from the hash and add an element. We also keep track of distinct elements. Below is the algorithm.

1) Create an empty hash map. Let hash map be hM

2) Initialize distinct element count ‘dist_count’ as 0.

3) Traverse through the first window and insert elements of the first window to hM. The elements are used as key and their counts as the value in hM. Also, keep updating ‘dist_count’

4) Print ‘dist_count’ for the first window.

3) Traverse through the remaining array (or other windows).

….a) Remove the first element of the previous window.

…….If the removed element appeared only once

…………..remove it from hM and do “dist_count–”

…….Else (appeared multiple times in hM)

…………..decrement its count in hM

….a) Add the current element (last element of the new window)

…….If the added element is not present in hM

…………..add it to hM and do “dist_count++”

…….Else (the added element appeared multiple times)

…………..increment its count in hM

Below is an implementation of above approach.

## Java

`// An efficient Java program to count distinct elements in ` `// every window of size k ` `import` `java.util.HashMap; ` ` ` `class` `CountDistinctWindow ` `{ ` ` ` `static` `void` `countDistinct(` `int` `arr[], ` `int` `k) ` ` ` `{ ` ` ` `// Creates an empty hashMap hM ` ` ` `HashMap<Integer, Integer> hM = ` ` ` `new` `HashMap<Integer, Integer>(); ` ` ` ` ` `// initialize distinct element count for ` ` ` `// current window ` ` ` `int` `dist_count = ` `0` `; ` ` ` ` ` `// Traverse the first window and store count ` ` ` `// of every element in hash map ` ` ` `for` `(` `int` `i = ` `0` `; i < k; i++) ` ` ` `{ ` ` ` `if` `(hM.get(arr[i]) == ` `null` `) ` ` ` `{ ` ` ` `hM.put(arr[i], ` `1` `); ` ` ` `dist_count++; ` ` ` `} ` ` ` `else` ` ` `{ ` ` ` `int` `count = hM.get(arr[i]); ` ` ` `hM.put(arr[i], count+` `1` `); ` ` ` `} ` ` ` `} ` ` ` ` ` `// Print count of first window ` ` ` `System.out.println(dist_count); ` ` ` ` ` `// Traverse through the remaining array ` ` ` `for` `(` `int` `i = k; i < arr.length; i++) ` ` ` `{ ` ` ` ` ` `// Remove first element of previous window ` ` ` `// If there was only one occurrence, then ` ` ` `// reduce distinct count. ` ` ` `if` `(hM.get(arr[i-k]) == ` `1` `) ` ` ` `{ ` ` ` `hM.remove(arr[i-k]); ` ` ` `dist_count--; ` ` ` `} ` ` ` `else` `// reduce count of the removed element ` ` ` `{ ` ` ` `int` `count = hM.get(arr[i-k]); ` ` ` `hM.put(arr[i-k], count-` `1` `); ` ` ` `} ` ` ` ` ` `// Add new element of current window ` ` ` `// If this element appears first time, ` ` ` `// increment distinct element count ` ` ` `if` `(hM.get(arr[i]) == ` `null` `) ` ` ` `{ ` ` ` `hM.put(arr[i], ` `1` `); ` ` ` `dist_count++; ` ` ` `} ` ` ` `else` `// Increment distinct element count ` ` ` `{ ` ` ` `int` `count = hM.get(arr[i]); ` ` ` `hM.put(arr[i], count+` `1` `); ` ` ` `} ` ` ` ` ` `// Print count of current window ` ` ` `System.out.println(dist_count); ` ` ` `} ` ` ` `} ` ` ` ` ` `// Driver method ` ` ` `public` `static` `void` `main(String arg[]) ` ` ` `{ ` ` ` `int` `arr[] = {` `1` `, ` `2` `, ` `1` `, ` `3` `, ` `4` `, ` `2` `, ` `3` `}; ` ` ` `int` `k = ` `4` `; ` ` ` `countDistinct(arr, k); ` ` ` `} ` `} ` |

## C++

`#include <iostream> ` `#include <map> ` `using` `namespace` `std; ` ` ` `void` `countDistinct(` `int` `arr[], ` `int` `k, ` `int` `n) ` `{ ` ` ` `// Creates an empty hashmap hm ` ` ` `map<` `int` `, ` `int` `> hm; ` ` ` ` ` `// initialize distinct element count for current window ` ` ` `int` `dist_count = 0; ` ` ` ` ` `// Traverse the first window and store count ` ` ` `// of every element in hash map ` ` ` `for` `(` `int` `i = 0; i < k; i++) ` ` ` `{ ` ` ` `if` `(hm[arr[i]] == 0) ` ` ` `{ ` ` ` `dist_count++; ` ` ` `} ` ` ` `hm[arr[i]] += 1; ` ` ` `} ` ` ` ` ` `// Print count of first window ` ` ` `cout << dist_count << endl; ` ` ` ` ` `// Traverse through the remaining array ` ` ` `for` `(` `int` `i = k; i < n; i++) ` ` ` `{ ` ` ` `// Remove first element of previous window ` ` ` `// If there was only one occurrence, then reduce distinct count. ` ` ` `if` `(hm[arr[i-k]] == 1) ` ` ` `{ ` ` ` `dist_count--; ` ` ` `} ` ` ` `// reduce count of the removed element ` ` ` `hm[arr[i-k]] -= 1; ` ` ` ` ` `// Add new element of current window ` ` ` `// If this element appears first time, ` ` ` `// increment distinct element count ` ` ` ` ` `if` `(hm[arr[i]] == 0) ` ` ` `{ ` ` ` `dist_count++; ` ` ` `} ` ` ` `hm[arr[i]] += 1; ` ` ` ` ` `// Print count of current window ` ` ` `cout << dist_count << endl; ` ` ` `} ` `} ` ` ` `int` `main() ` `{ ` ` ` `int` `arr[] = {1, 2, 1, 3, 4, 2, 3}; ` ` ` `int` `size = ` `sizeof` `(arr)/` `sizeof` `(arr[0]); ` ` ` `int` `k = 4; ` ` ` `countDistinct(arr, k, size); ` ` ` ` ` `return` `0; ` `} ` `//This solution is contributed by Aditya Goel ` |

Output:

3 4 4 3

Time complexity of the above solution is O(n).

This article is contributed by **Piyush**. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

## Recommended Posts:

- Top 20 Hashing Technique based Interview Questions
- Find smallest range containing elements from k lists
- Check if an array can be divided into pairs whose sum is divisible by k
- Find four elements a, b, c and d in an array such that a+b = c+d
- Find the length of largest subarray with 0 sum
- Longest Consecutive Subsequence
- Hashing | Set 2 (Separate Chaining)
- Design a data structure that supports insert, delete, search and getRandom in constant time
- Advantages of BST over Hash Table
- Group multiple occurrence of array elements ordered by first occurrence
- Length of the largest subarray with contiguous elements | Set 2
- Print All Distinct Elements of a given integer array
- Find if there is a subarray with 0 sum
- Largest subarray with equal number of 0s and 1s
- Sliding Window Maximum (Maximum of all subarrays of size k)