Given two arrays arr1[] and arr2[]. We can generate another array arr3[] by adding each element of the array arr1[] to each element arr2[]. The task is to find the count of distinct element in the array arr3[].
Examples:
Input: Arr1[] = {1, 2}, Arr2[] = {3, 4}, MAX = 4
Output:
4 -> 1
5 -> 2
6 -> 1
Explanation:
Here the third array will be Arr3[] = {1+3, 1+4, 2+3, 2+4} = {4, 5, 5, 6}
Input: Arr1[] = {1, 2}, Arr2[] = {1, 2, 1}, MAX = 2
Output:
2 -> 2
3 -> 3
4 -> 1
Explanation:
Here the third array is Arr3[] = {1+1, 1+2, 1+1, 2+1, 2+2, 2+1} = {2, 3, 2, 3, 4, 3}
Therfore Count of elements from 1 to 2*2 (4) are {0, 2, 3, 1}
Naive Approach: The naive approach is to find the sum of all possible pairs from the given two arrays and insert that sum into the array arr3[]. Print the frequency of all the elements of the array arr3[].
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find Occurence of each // element from 1 to 2*MAX void findCount(vector< int >& Arr1, vector< int >& Arr2) { // Intialise MAX int MAX = max(*max_element(Arr1.begin(), Arr1.end()), *max_element(Arr2.begin(), Arr2.end())); // Count vector to store count of // each element from 1 to 2*MAX vector< int > Count(2 * MAX + 1, 0); // Size of Arr1 and Arr2 int n = Arr1.size(), m = Arr2.size(); // Find the elements of arr3[] and // increase count of element by 1 for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { int element = Arr1[i] + Arr2[j]; Count[element]++; } } // Print the result for ( int i = 1; i <= 2 * MAX; i++) { if (Count[i] > 0) { cout << i << "->" << Count[i] << endl; } } } // Driver Code int main() { // Given arrays arr1[] and arr2[] vector< int > arr1 = { 1, 2 }; vector< int > arr2 = { 1, 2, 1 }; // Function Call findCount(arr1, arr2); } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find Occurence of each // element from 1 to 2*MAX static void findCount( int [] Arr1, int []Arr2) { // Initialise MAX int MAX = Math.max(Arrays.stream(Arr1).max().getAsInt(), Arrays.stream(Arr2).max().getAsInt()); // Count vector to store count of // each element from 1 to 2*MAX int [] Count = new int [ 2 * MAX + 1 ]; // Size of Arr1 and Arr2 int n = Arr1.length, m = Arr2.length; // Find the elements of arr3[] and // increase count of element by 1 for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < m; j++) { int element = Arr1[i] + Arr2[j]; Count[element]++; } } // Print the result for ( int i = 1 ; i <= 2 * MAX; i++) { if (Count[i] > 0 ) { System.out.print(i + "->" + Count[i] + "\n" ); } } } // Driver Code public static void main(String[] args) { // Given arrays arr1[] and arr2[] int [] arr1 = { 1 , 2 }; int [] arr2 = { 1 , 2 , 1 }; // Function call findCount(arr1, arr2); } } // This code is contributed by sapnasingh4991 |
Python3
# Python3 program for the above approach # Function to find Occurence of each # element from 1 to 2*MAX def findCount(Arr1, Arr2): # Initialise MAX MAX = max ( max (Arr1), max (Arr2)); # Count vector to store count of # each element from 1 to 2*MAX #Count = new int[2 * MAX + 1]; Count = [ 0 for i in range ( 2 * MAX + 1 )] # Size of Arr1 and Arr2 n = len (Arr1); m = len (Arr2); # Find the elements of arr3 and # increase count of element by 1 for i in range (n): for j in range (m): element = Arr1[i] + Arr2[j]; Count[element] + = 1 ; # Prthe result for i in range ( 1 , 2 * MAX + 1 ): if (Count[i] > 0 ): print (i , "->" , Count[i]); # Driver Code if __name__ = = '__main__' : # Given arrays arr1 and arr2 arr1 = [ 1 , 2 ]; arr2 = [ 1 , 2 , 1 ]; # Function call findCount(arr1, arr2); # This code is contributed by Rohit_ranjan |
C#
// C# program for the above approach using System; using System.Linq; class GFG{ // Function to find Occurence of each // element from 1 to 2*MAX static void findCount( int [] Arr1, int []Arr2) { // Initialise MAX int MAX = Math.Max(Arr1.Max(), Arr2.Max()); // Count vector to store count of // each element from 1 to 2*MAX int [] Count = new int [2 * MAX + 1]; // Size of Arr1 and Arr2 int n = Arr1.Length, m = Arr2.Length; // Find the elements of arr3[] and // increase count of element by 1 for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { int element = Arr1[i] + Arr2[j]; Count[element]++; } } // Print the result for ( int i = 1; i <= 2 * MAX; i++) { if (Count[i] > 0) { Console.Write(i + "->" + Count[i] + "\n" ); } } } // Driver Code public static void Main(String[] args) { // Given arrays arr1[] and arr2[] int [] arr1 = { 1, 2 }; int [] arr2 = { 1, 2, 1 }; // Function call findCount(arr1, arr2); } } // This code is contributed by Princi Singh |
2->2 3->3 4->1
Time Complexity: O(N2)
Space Complexity: O(N)
Efficient Solution: The given task can be efficiently done with the help of FFT(Fast Fourier Transform). Below are the steps:
- Consider the examples Arr1[] = {1, 2} and Arr2[] = {1, 2, 1}. Let Count be the frequency array i.e., Count[i] represents the frequency of i in resultant array.
- When Arr1[i] is added to Arr2[j], we increment Count[s] where s = Arr1[i]+Arr2[j]. This is similar to multiplying polynomials as there power get added.
- Let A(x) be the polynomial represented by Arr1[]. Elements of Arr1 represents power of x and their count in Arr1 are coefficients terms with that power in polynomial.
- For each term, power of x represents the resulting element and the coefficient represents its count.
- If term is
- Then Count[i] = k. Here Count is same as P(x).
- To calculate the value of P(x), we can simply multiply A(x) and B(x).
So,
Similiarily
Let
The Naive method of polynomial multiplication takes O(N2). To make the multiplication faster we can use FFT(Fast Fourier Transform).
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; using cd = complex< double >; // Value of PI need in FFT const double PI = acos (-1); // Function to implement the FFT void fft(vector<cd>& a, bool invert) { int n = a.size(); if (n == 1) return ; vector<cd> a0(n / 2), a1(n / 2); for ( int i = 0; 2 * i < n; i++) { a0[i] = a[2 * i]; a1[i] = a[2 * i + 1]; } // Recursively find fft fft(a0, invert); fft(a1, invert); double ang = 2 * PI / n * (invert ? -1 : 1); cd w(1), wn( cos (ang), sin (ang)); for ( int i = 0; 2 * i < n; i++) { a[i] = a0[i] + w * a1[i]; a[i + n / 2] = a0[i] - w * a1[i]; if (invert) { a[i] /= 2; a[i + n / 2] /= 2; } w *= wn; } } // Function to multiply two polynomials // A(x) and B(x) using FFT vector< int > multiply(vector< int > const & a, vector< int > const & b) { vector<cd> fa(a.begin(), a.end()), fb(b.begin(), b.end()); int n = 1; while (n < a.size() + b.size()) { n <<= 1; } // Resize fa and fb fa.resize(n); fb.resize(n); // Assign initially false fft(fa, false ); fft(fb, false ); for ( int i = 0; i < n; i++) fa[i] *= fb[i]; fft(fa, true ); // To store the result vector< int > result(n); for ( int i = 0; i < n; i++) result[i] = round(fa[i].real()); // Return result return result; } // Function to find the Count of each // element from 1 to 2*MAX void findCount(vector< int >& Arr1, vector< int >& Arr2) { // Intialise MAX int MAX = max(*max_element(Arr1.begin(), Arr1.end()), *max_element(Arr2.begin(), Arr2.end())); int n = Arr1.size(); int m = Arr2.size(); // vector for Polynomial A(x) from Arr1 vector< int > A(MAX + 1); for ( int i = 0; i < n; i++) { A[Arr1[i]]++; } // Vector for Polynomial B(x) from Arr2 vector< int > B(MAX + 1); for ( int i = 0; i < m; i++) { B[Arr2[i]]++; } // Vector to store the result of // multiplication of A(x) and B(x) vector< int > P; // Multiplying Arr1 and Arr2 and // storing in P is same as Count P = multiply(A, B); // Print the result for ( int i = 1; i <= 2 * MAX; i++) { if (P[i] > 0) { cout << i << "->" << P[i] << endl; } } cout << '\n' ; } // Driver Code int main() { // Given arrays arr1[] and arr2[] vector< int > arr1 = { 1, 2 }; vector< int > arr2 = { 1, 2, 1 }; // Function Call findCount(arr1, arr2); } |
2->2 3->3 4->1
Time Complexity: O(N*log N)
Auxiliary Space: O(N)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.