Count digits in a factorial using Kamenetsky’s Formula
Given an integer n (can be very large), find the number of digits that appear in its factorial, where factorial is defined as, factorial(n) = 1*2*3*4……..*n and factorial(0) = 1
Examples:
Input : n = 1
Output : 1
1! = 1, hence number of digits is 1Input : 5
Output : 3
5! = 120, i.e., 3 digitsInput : 10
Output : 7
10! = 3628800, i.e., 7 digitsInput : 50000000
Output : 363233781Input : 1000000000
Output : 8565705523
We’ve already discussed the solution for small values of n in the Count digits in a factorial | Set 1. However that solution would not be able to handle cases where n >10^6
So, can we improve our solution?
Yes! we can.
We can use Kamenetsky’s formula to find our answer!
It approximates the number of digits in a factorial by : f(x) = log10(((n/e)^n) * sqrt(2*pi*n)) Thus, we can pretty easily use the property of logarithms to, f(x) = n* log10((n/e)) + log10(2*pi*n)/2
And that’s it!
Our solution can handle very large inputs that can be accommodated in a 32-bit integer,
and even beyond that!
Below is the implementation of the above idea :
C++
// A optimised program to find the // number of digits in a factorial #include <bits/stdc++.h> using namespace std; // Returns the number of digits present // in n! Since the result can be large // long long is used as return type long long findDigits( int n) { // factorial of -ve number // doesn't exists if (n < 0) return 0; // base case if (n <= 1) return 1; // Use Kamenetsky formula to calculate // the number of digits double x = ((n * log10 (n / M_E) + log10 (2 * M_PI * n) / 2.0)); return floor (x) + 1; } // Driver Code int main() { cout << findDigits(1) << endl; cout << findDigits(50000000) << endl; cout << findDigits(1000000000) << endl; cout << findDigits(120) << endl; return 0; } |
Java
// An optimised java program to find the // number of digits in a factorial import java.io.*; import java.util.*; class GFG { public static double M_E = 2.71828182845904523536 ; public static double M_PI = 3.141592654 ; // Function returns the number of // digits present in n! since the // result can be large, long long // is used as return type static long findDigits( int n) { // factorial of -ve number doesn't exists if (n < 0 ) return 0 ; // base case if (n <= 1 ) return 1 ; // Use Kamenetsky formula to calculate // the number of digits double x = (n * Math.log10(n / M_E) + Math.log10( 2 * M_PI * n) / 2.0 ); return ( long )Math.floor(x) + 1 ; } // Driver Code public static void main(String[] args) { System.out.println(findDigits( 1 )); System.out.println(findDigits( 50000000 )); System.out.println(findDigits( 1000000000 )); System.out.println(findDigits( 120 )); } } // This code is contributed by Pramod Kumar. |
Python3
# A optimised Python3 program to find # the number of digits in a factorial import math # Returns the number of digits present # in n! Since the result can be large # long long is used as return type def findDigits(n): # factorial of -ve number # doesn't exists if (n < 0 ): return 0 ; # base case if (n < = 1 ): return 1 ; # Use Kamenetsky formula to # calculate the number of digits x = ((n * math.log10(n / math.e) + math.log10( 2 * math.pi * n) / 2.0 )); return math.floor(x) + 1 ; # Driver Code print (findDigits( 1 )); print (findDigits( 50000000 )); print (findDigits( 1000000000 )); print (findDigits( 120 )); # This code is contributed by mits |
C#
// An optimised C# program to find the // number of digits in a factorial. using System; class GFG { public static double M_E = 2.71828182845904523536; public static double M_PI = 3.141592654; // Function returns the number of // digits present in n! since the // result can be large, long long // is used as return type static long findDigits( int n) { // factorial of -ve number // doesn't exists if (n < 0) return 0; // base case if (n <= 1) return 1; // Use Kamenetsky formula to calculate // the number of digits double x = (n * Math.Log10(n / M_E) + Math.Log10(2 * M_PI * n) / 2.0); return ( long )Math.Floor(x) + 1; } // Driver Code public static void Main() { Console.WriteLine(findDigits(1)); Console.WriteLine(findDigits(50000000)); Console.WriteLine(findDigits(1000000000)); Console.Write(findDigits(120)); } } // This code is contributed by Nitin Mittal |
PHP
<?php // A optimised PHP program to find the // number of digits in a factorial // Returns the number of digits present // in n! Since the result can be large // long long is used as return type function findDigits( $n ) { // factorial of -ve number // doesn't exists if ( $n < 0) return 0; // base case if ( $n <= 1) return 1; // Use Kamenetsky formula to // calculate the number of digits $x = (( $n * log10( $n / M_E) + log10(2 * M_PI * $n ) / 2.0)); return floor ( $x ) + 1; } // Driver Code echo findDigits(1). "\n" ; echo findDigits(50000000). "\n" ; echo findDigits(1000000000). "\n" ; echo findDigits(120) ; // This code is contributed by nitin mittal ?> |
Javascript
<script> // A optimised Javascript program to find the // number of digits in a factorial // Returns the number of digits present // in n! Since the result can be large // long long is used as return type function findDigits(n) { // factorial of -ve number // doesn't exists if (n < 0) return 0; // base case if (n <= 1) return 1; // Use Kamenetsky formula to calculate // the number of digits let x = ((n * Math.log10(n / Math.E) + Math.log10(2 * Math.PI * n) / 2.0)); return Math.floor(x) + 1; } // Driver Code document.write(findDigits(1) + "<br>" ); document.write(findDigits(50000000) + "<br>" ); document.write(findDigits(1000000000) + "<br>" ); document.write(findDigits(120) + "<br>" ); // This code is contributed by Mayank Tyagi </script> |
1 363233781 8565705523 199
Time complexity: O(logn)
Auxiliary space: O(1)
Method: First finding the factorial of a number using factorial function then using while loop finding the number of digits present in the factorial number.
C++
// C++ code for the above approach #include <bits/stdc++.h> using namespace std; int factorial( int n) { int fact = 1; for ( int i = 1; i <= n; i++) { fact = fact * i; } return fact; } int main() { int n = 10, c = 0; // finding factorial of a number int f = factorial(n); // counting the number of digits present // in the factoral number while (f != 0) { f /= 10; c += 1; } cout << c << endl; } // This code is contributed by phasing17 |
Java
// Java code for the above approach import java.util.*; class GFG { static int factorial( int n) { int fact = 1 ; for ( int i = 1 ; i <= n; i++) { fact = fact * i; } return fact; } public static void main(String[] args) { int n = 10 , c = 0 ; // finding factorial of a number int f = factorial(n); // counting the number of digits present // in the factoral number while (f != 0 ) { f /= 10 ; c += 1 ; } System.out.println(c); } } // This code is contributed by phasing17 |
Python3
# Python code to count number of digits # in a factorial of a number # importing math module from math import * n = 10 ;c = 0 # finding factorial of a number f = factorial(n) # counting the number of digits present # in the factoral number while (f! = 0 ): f / / = 10 c + = 1 print (c) # this code is contributed by gangarajula laxmi |
C#
// C# code for the above approach using System; using System.Collections.Generic; class GFG { static int factorial( int n) { int fact = 1; for ( int i = 1; i <= n; i++) { fact = fact * i; } return fact; } public static void Main( string [] args) { int n = 10, c = 0; // finding factorial of a number int f = factorial(n); // counting the number of digits present // in the factoral number while (f != 0) { f /= 10; c += 1; } Console.WriteLine(c); } } // This code is contributed by phasing17 |
Javascript
<script> // JavaScript code for the above approach function factorial(n) { let fact = 1; for (let i = 1; i <= n; i++) { fact = fact * i; } return fact; } let n = 10; c = 0 // finding factorial of a number let f = factorial(n) // counting the number of digits present // in the factoral number while (f != 0) { f = Math.floor(f / 10) c += 1 } document.write(c); // This code is contributed by Potta Lokesh </script> |
7
Time complexity: O(n) because factorial function is using a for loop
Auxiliary space: O(1) as it is using constant space for variables
References : oeis.org
This article is contributed by Ashutosh Kumar .If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...