Related Articles

# Count of different straight lines with total n points with m collinear

• Difficulty Level : Basic
• Last Updated : 09 Apr, 2021

There are ‘n’ points in a plane out of which ‘m points are collinear. How many different straight lines can form?
Examples:

```Input : n = 3, m = 3
Output : 1
We can form only 1 distinct straight line
using 3 collinear points

Input : n = 10, m = 4
Output : 40```

Number of distinct Straight lines = nC2mC2 + 1
How does this formula work?
Consider the second example above. There are 10 points, out of which 4 collinear. A straight line will be formed by any two of these ten points. Thus forming a straight line amounts to selecting any two of the 10 points. Two points can be selected out of the 10 points in nC2 ways.
Number of straight line formed by 10 points when no 2 of them are co-linear = 10C2…..…(i)
Similarly, the number of straight lines formed by 4 points when no 2 of them are co-linear = 4C2….(ii)
Since straight lines formed by these 4 points are sane, straight lines formed by them will reduce to only one.
Required number of straight lines formed = 10C24C2 + 1 = 45 – 6 + 1 = 40

Implementation of the approach is given as:

## C++

 `// CPP program to count number of straight lines``// with n total points, out of which m are``// collinear.``#include ` `using` `namespace` `std;`` ` `// Returns value of binomial coefficient``// Code taken from https://goo.gl/vhy4jp``int` `nCk(``int` `n, ``int` `k)``{` `    ``int` `C[k+1];``    ``memset``(C, 0, ``sizeof``(C));`` ` `    ``C = 1;  ``// nC0 is 1`` ` `    ``for` `(``int` `i = 1; i <= n; i++)``    ``{` `        ``// Compute next row of pascal triangle``        ``// using the previous row``        ``for` `(``int` `j = min(i, k); j > 0; j--)` `            ``C[j] = C[j] + C[j-1];``    ``}` `    ``return` `C[k];``}` ` ` `/* function to calculate number of straight lines``   ``can be formed */``int` `count_Straightlines(``int` `n,``int` `m)``{` `    ``return` `(nCk(n, 2) - nCk(m, 2)+1);` `}`` `  `/* driver function*/``int` `main()``{` `    ``int` `n = 4, m = 3 ;``    ``cout << count_Straightlines(n, m);``    ``return` `0;` `}`

## Java

 `// Java program to count number of straight lines``// with n total points, out of which m are``// collinear.``import` `java.util.*;``import` `java.lang.*;` `public` `class` `GfG  {` `    ``// Returns value of binomial coefficient``    ``// Code taken from https://goo.gl/vhy4jp``    ``public` `static` `int` `nCk(``int` `n, ``int` `k)``    ``{``        ``int``[] C = ``new` `int``[k + ``1``];` `        ``C[``0``] = ``1``; ``// nC0 is 1` `        ``for` `(``int` `i = ``1``; i <= n; i++)  {` `            ``// Compute next row of pascal triangle``            ``// using the previous row``            ``for` `(``int` `j = Math.min(i, k); j > ``0``; j--)``                ``C[j] = C[j] + C[j - ``1``];``        ``}` `        ``return` `C[k];``    ``}`  `    ``/* function to calculate number of straight lines``    ``can be formed */``    ``public` `static` `int` `count_Straightlines(``int` `n, ``int` `m)``    ``{``        ``return` `(nCk(n, ``2``) - nCk(m, ``2``) + ``1``);``    ``}`  `    ``// Driver function``    ``public` `static` `void` `main(String argc[])``    ``{``        ``int` `n = ``4``, m = ``3``;``        ``System.out.println(count_Straightlines(n, m));``    ``}` `    ``// This code is contributed by Sagar Shukla``}`

## Python

 `# Python program to count number of straight lines``# with n total points, out of which m are``# collinear.` `# Returns value of binomial coefficient``# Code taken from https://goo.gl/vhy4jp``def` `nCk(n, k):``    ` `    ``C ``=` `[``0``]``*` `(k``+``1``)``    ` `    ``C[``0``] ``=` `1` `# nC0 is 1` `    ``for` `i ``in` `range``(``1``, n``+``1``):``        ` `        ``# Compute next row of pascal triangle``        ``# using the previous row``        ``j ``=` `min``(i, k)``        ` `        ``while``(j>``0``):``            ` `            ``C[j] ``=` `C[j] ``+` `C[j``-``1``]``            ``j ``=` `j ``-` `1``            ` `    ``return` `C[k]` `#function to calculate number of straight lines``# can be formed``def` `count_Straightlines(n, m):``    ` `    ``return` `(nCk(n, ``2``) ``-` `nCk(m, ``2``)``+``1``)` `# Driven code``n ``=` `4``m ``=` `3``print``( count_Straightlines(n, m) );` `# This code is contributed by "rishabh_jain".`

## C#

 `// C# program to count number of straight``// lines with n total points, out of``// which m are collinear.``using` `System;` `public` `class` `GfG {` `    ``// Returns value of binomial coefficient``    ``// Code taken from https://goo.gl/vhy4jp``    ``public` `static` `int` `nCk(``int` `n, ``int` `k)``    ``{``        ``int``[] C = ``new` `int``[k + 1];` `        ``// nC0 is 1``        ``C = 1;` `        ``for` `(``int` `i = 1; i <= n; i++)``        ``{` `            ``// Compute next row of pascal triangle``            ``// using the previous row``            ``for` `(``int` `j = Math.Min(i, k); j > 0; j--)``                ``C[j] = C[j] + C[j - 1];``        ``}` `        ``return` `C[k];``    ``}`  `    ``// Function to calculate number of``    ``// straight lines can be formed``    ``public` `static` `int` `count_Straightlines(``int` `n, ``int` `m)``    ``{``        ``return` `(nCk(n, 2) - nCk(m, 2) + 1);``    ``}`  `    ``// Driver Code``    ``public` `static` `void` `Main(String []args)``    ``{``        ``int` `n = 4, m = 3;``        ``Console.WriteLine(count_Straightlines(n, m));``    ``}`  `}` `// This code is contributed by vt_m.`

## PHP

 ` 0; ``\$j``--)``            ``\$C``[``\$j``] = ``\$C``[``\$j``] + ``\$C``[``\$j``-1];``    ``}``    ``return` `\$C``[``\$k``];``}`  `// function to calculate``// number of straight lines``// can be formed``function` `count_Straightlines(``\$n``, ``\$m``)``{` `    ``return` `(nCk(``\$n``, 2) - nCk(``\$m``, 2) + 1);` `}` `// Driver Code``\$n` `= 4;``\$m` `= 3;``echo``(count_Straightlines(``\$n``, ``\$m``));` `// This code is contributed``// by Prasad Kshirsagar``?>`

## Javascript

 ``

Output:

`4`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up