Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count different numbers that can be generated such that there digits sum is equal to ‘n’

  • Difficulty Level : Medium
  • Last Updated : 22 Apr, 2021

Given an positive integer n. Count the different numbers that can be generated using digits 1, 2, 3 and 4 such that digits sum is the number ‘n’. Here digit ‘4’ will be treated as ‘1’. For instance, 
32 = 3 + 2 = 5 
1341 = 1 + 3 + 1 + 1 = 6 
441 = 1 + 1 + 1 = 3 
Note: Answer the value in mod = 109+7 

Input: 2
Output: 5
Explanation
There are only '5' numbers that can 
be made:
11 = 1 + 1 = 2
14 = 1 + 1 = 2
41 = 1 + 1 = 2
44 = 1 + 1 = 2
2  = 2

Input: 3
Output: 13
Explanation
There are only '13' numbers that can 
be made i.e., 111, 114, 141, 144, 411, 
414, 441, 444, 12, 21, 42, 24, 3.

The approach is to use Dynamic programming. The problem is same as coin change and Ways to write n as sum of two or more positive integers problems. The only difference is that, instead of iterating up-to ‘n’, iterate only from 1 to 3 as according to question, only 1, 2, 3 and 4 digits are allowed. But since ‘4’ can be replaced with ‘1’ therefore iterate through 1, 2 and 3 and double the count of ‘1’ for compensation of digit ‘4’. 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

C++




// C++ program to count ways to write
// 'n' as sum of digits
#include<iostream>
using namespace std;
 
// Function to count 'num' as sum of
// digits(1, 2, 3, 4)
int countWays(int num)
{
    // Initialize dp[] array
    int dp[num+1];
 
    const int MOD = 1e9 + 7;
    // Base case
    dp[1] = 2;
 
    for(int i = 2; i <= num; ++i)
    {
        // Initialize the current dp[]
        // array as '0'
        dp[i] = 0;
 
        for(int j = 1; j <= 3; ++j)
        {
            /* if i == j then there is only
               one way to write with element
               itself 'i' */
            if(i - j == 0)
               dp[i] += 1;
 
            /* If j == 1, then there exist
               two ways, one from '1' and
               other from '4' */
            else if (j == 1)
               dp[i] += dp[i-j] * 2;
 
            /* if i - j is positive then
               pick the element from 'i-j'
               element of dp[] array */
            else if(i - j > 0)
               dp[i] += dp[i-j];
 
        // Check for modulas
        if(dp[i] >= MOD)
            dp[i] %= MOD;
        }
 
    }
 
    // return the final answer
    return dp[num];
}
 
// Driver code
int main()
{
    int n = 3;
    cout << countWays(n);
     
    return 0;
}

Java




// Java program to count ways to
// write 'n' as sum of digits
import java.io.*;
 
public class GFG
{
 
// Function to count 'num' as
// sum of digits(1, 2, 3, 4)
static int countWays(int num)
{
     
    // Initialize dp[] array
    int []dp= new int[num + 1];
    int MOD = (int)1E9 + 7;
     
    // Base case
    dp[1] = 2;
 
    for(int i = 2; i <= num; ++i)
    {
        // Initialize the current
        // dp[] array as '0'
        dp[i] = 0;
 
        for(int j = 1; j <= 3; ++j)
        {
            // if i == j then there is
            // only one way to write with
            // element itself 'i'
            if(i - j == 0)
            dp[i] += 1;
 
            // If j == 1, then there exist
            // two ways, one from '1' and
            // other from '4'
            else if (j == 1)
                dp[i] += dp[i - j] * 2;
 
            // if i - j is positive then
            // pick the element from 'i-j'
            // element of dp[] array
            else if(i - j > 0)
                dp[i] += dp[i - j];
 
        // Check for modulas
        if(dp[i] >= MOD)
            dp[i] %= MOD;
        }
 
    }
 
    // return the final answer
    return dp[num];
}
 
    // Driver code
    static public void main (String[] args)
    {
        int n = 3;
        System.out.println(countWays(n));
     
    }
}
 
// This code is contributed by vt_m

Python3




# Python3 program to count ways to write
# 'n' as sum of digits
 
# Function to count 'num' as sum of
# digits(1, 2, 3, 4)
def countWays(num):
 
    # Initialize dp[] array
    dp = [0] * (num + 1);
 
    MOD = 100000000 + 7;
     
    # Base case
    dp[1] = 2;
 
    for i in range(2, num + 1):
         
        # Initialize the current dp[]
        # array as '0'
        dp[i] = 0;
 
        for j in range(1, 4):
             
            # if i == j then there is only
            # one way to write with element
            # itself 'i'
            if(i - j == 0):
                dp[i] += 1;
 
            # If j == 1, then there exist
            # two ways, one from '1' and
            # other from '4'
            elif (j == 1):
                dp[i] += dp[i - j] * 2;
 
            # if i - j is positive then
            # pick the element from 'i-j'
            # element of dp[] array
            elif(i - j > 0):
                dp[i] += dp[i - j];
 
        # Check for modulas
        if(dp[i] >= MOD):
            dp[i] %= MOD;
 
    # return the final answer
    return dp[num];
 
# Driver code
n = 3;
print(countWays(n));
 
# This code is contributed by mits

C#




// C# program to count ways to
// write 'n' as sum of digits
using System;
 
public class GFG
{
 
// Function to count 'num' as
// sum of digits(1, 2, 3, 4)
static int countWays(int num)
{
     
    // Initialize dp[] array
    int []dp= new int[num + 1];
    int MOD = (int)1E9 + 7;
     
    // Base case
    dp[1] = 2;
 
    for(int i = 2; i <= num; ++i)
    {
        // Initialize the current
        // dp[] array as '0'
        dp[i] = 0;
 
        for(int j = 1; j <= 3; ++j)
        {
            // if i == j then there is
            // only one way to write with
            // element itself 'i'
            if(i - j == 0)
            dp[i] += 1;
 
            // If j == 1, then there exist
            // two ways, one from '1' and
            // other from '4'
            else if (j == 1)
                dp[i] += dp[i - j] * 2;
 
            // if i - j is positive then
            // pick the element from 'i-j'
            // element of dp[] array
            else if(i - j > 0)
                dp[i] += dp[i - j];
 
        // Check for modulas
        if(dp[i] >= MOD)
            dp[i] %= MOD;
        }
 
    }
 
    // return the final answer
    return dp[num];
}
 
    // Driver code
    static public void Main (String []args)
    {
        int n = 3;
        Console.WriteLine(countWays(n));
     
    }
}
 
// This code is contributed by vt_m

PHP




<?php
// PHP program to count ways to write
// 'n' as sum of digits
 
// Function to count 'num' as sum of
// digits(1, 2, 3, 4)
function countWays($num)
{
    // Initialize dp[] array
    $dp[$num + 1] = array();
 
    $MOD = 100000000 + 7;
     
    // Base case
    $dp[1] = 2;
 
    for($i = 2; $i <= $num; ++$i)
    {
        // Initialize the current dp[]
        // array as '0'
        $dp[$i] = 0;
 
        for($j = 1; $j <= 3; ++$j)
        {
            /* if i == j then there is only
            one way to write with element
            itself 'i' */
            if($i - $j == 0)
            $dp[$i] += 1;
 
            /* If j == 1, then there exist
            two ways, one from '1' and
            other from '4' */
            else if ($j == 1)
            $dp[$i] += $dp[$i - $j] * 2;
 
            /* if i - j is positive then
            pick the element from 'i-j'
            element of dp[] array */
            else if($i - $j > 0)
            $dp[$i] += $dp[$i - $j];
 
        // Check for modulas
        if($dp[$i] >= $MOD)
            $dp[$i] %= $MOD;
        }
    }
 
    // return the final answer
    return $dp[$num];
}
 
// Driver code
$n = 3;
echo countWays($n);
 
// This code is contributed by jit_t
?>

Javascript




<script>
 
// JavaScript program to count ways to
// write 'n' as sum of digits
 
// Function to count 'num' as
// sum of digits(1, 2, 3, 4)
function countWays(num)
{
     
    // Initialize dp[] array
    let dp = [];
    let MOD = 1E9 + 7;
       
    // Base case
    dp[1] = 2;
   
    for(let i = 2; i <= num; ++i)
    {
         
        // Initialize the current
        // dp[] array as '0'
        dp[i] = 0;
   
        for(let j = 1; j <= 3; ++j)
        {
             
            // If i == j then there is
            // only one way to write with
            // element itself 'i'
            if (i - j == 0)
                dp[i] += 1;
   
            // If j == 1, then there exist
            // two ways, one from '1' and
            // other from '4'
            else if (j == 1)
                dp[i] += dp[i - j] * 2;
   
            // If i - j is positive then
            // pick the element from 'i-j'
            // element of dp[] array
            else if (i - j > 0)
                dp[i] += dp[i - j];
   
            // Check for modulas
            if (dp[i] >= MOD)
                dp[i] %= MOD;
        }
   
    }
     
    // Return the final answer
    return dp[num];
}
 
// Driver Code
let n = 3;
 
document.write(countWays(n));
 
// This code is contributed by susmitakundugoaldanga
 
</script>

Output 

13

Time complexity: O(n) 
Auxiliary space: O(n)
Note: Asked in Directi coding round(2014 and 2017)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :